Bitcoin Core  27.99.0
P2P Digital Currency
ecdsa_impl.h
Go to the documentation of this file.
1 /***********************************************************************
2  * Copyright (c) 2013-2015 Pieter Wuille *
3  * Distributed under the MIT software license, see the accompanying *
4  * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5  ***********************************************************************/
6 
7 
8 #ifndef SECP256K1_ECDSA_IMPL_H
9 #define SECP256K1_ECDSA_IMPL_H
10 
11 #include "scalar.h"
12 #include "field.h"
13 #include "group.h"
14 #include "ecmult.h"
15 #include "ecmult_gen.h"
16 #include "ecdsa.h"
17 
23  0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
24  0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
25 );
26 
33  0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
34 );
35 
36 static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend) {
37  size_t lenleft;
38  unsigned char b1;
39  VERIFY_CHECK(len != NULL);
40  *len = 0;
41  if (*sigp >= sigend) {
42  return 0;
43  }
44  b1 = *((*sigp)++);
45  if (b1 == 0xFF) {
46  /* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
47  return 0;
48  }
49  if ((b1 & 0x80) == 0) {
50  /* X.690-0207 8.1.3.4 short form length octets */
51  *len = b1;
52  return 1;
53  }
54  if (b1 == 0x80) {
55  /* Indefinite length is not allowed in DER. */
56  return 0;
57  }
58  /* X.690-207 8.1.3.5 long form length octets */
59  lenleft = b1 & 0x7F; /* lenleft is at least 1 */
60  if (lenleft > (size_t)(sigend - *sigp)) {
61  return 0;
62  }
63  if (**sigp == 0) {
64  /* Not the shortest possible length encoding. */
65  return 0;
66  }
67  if (lenleft > sizeof(size_t)) {
68  /* The resulting length would exceed the range of a size_t, so
69  * it is certainly longer than the passed array size. */
70  return 0;
71  }
72  while (lenleft > 0) {
73  *len = (*len << 8) | **sigp;
74  (*sigp)++;
75  lenleft--;
76  }
77  if (*len > (size_t)(sigend - *sigp)) {
78  /* Result exceeds the length of the passed array.
79  (Checking this is the responsibility of the caller but it
80  can't hurt do it here, too.) */
81  return 0;
82  }
83  if (*len < 128) {
84  /* Not the shortest possible length encoding. */
85  return 0;
86  }
87  return 1;
88 }
89 
90 static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
91  int overflow = 0;
92  unsigned char ra[32] = {0};
93  size_t rlen;
94 
95  if (*sig == sigend || **sig != 0x02) {
96  /* Not a primitive integer (X.690-0207 8.3.1). */
97  return 0;
98  }
99  (*sig)++;
100  if (secp256k1_der_read_len(&rlen, sig, sigend) == 0) {
101  return 0;
102  }
103  if (rlen == 0 || rlen > (size_t)(sigend - *sig)) {
104  /* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */
105  return 0;
106  }
107  if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
108  /* Excessive 0x00 padding. */
109  return 0;
110  }
111  if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
112  /* Excessive 0xFF padding. */
113  return 0;
114  }
115  if ((**sig & 0x80) == 0x80) {
116  /* Negative. */
117  overflow = 1;
118  }
119  /* There is at most one leading zero byte:
120  * if there were two leading zero bytes, we would have failed and returned 0
121  * because of excessive 0x00 padding already. */
122  if (rlen > 0 && **sig == 0) {
123  /* Skip leading zero byte */
124  rlen--;
125  (*sig)++;
126  }
127  if (rlen > 32) {
128  overflow = 1;
129  }
130  if (!overflow) {
131  if (rlen) memcpy(ra + 32 - rlen, *sig, rlen);
132  secp256k1_scalar_set_b32(r, ra, &overflow);
133  }
134  if (overflow) {
136  }
137  (*sig) += rlen;
138  return 1;
139 }
140 
141 static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
142  const unsigned char *sigend = sig + size;
143  size_t rlen;
144  if (sig == sigend || *(sig++) != 0x30) {
145  /* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
146  return 0;
147  }
148  if (secp256k1_der_read_len(&rlen, &sig, sigend) == 0) {
149  return 0;
150  }
151  if (rlen != (size_t)(sigend - sig)) {
152  /* Tuple exceeds bounds or garage after tuple. */
153  return 0;
154  }
155 
156  if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
157  return 0;
158  }
159  if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
160  return 0;
161  }
162 
163  if (sig != sigend) {
164  /* Trailing garbage inside tuple. */
165  return 0;
166  }
167 
168  return 1;
169 }
170 
171 static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
172  unsigned char r[33] = {0}, s[33] = {0};
173  unsigned char *rp = r, *sp = s;
174  size_t lenR = 33, lenS = 33;
175  secp256k1_scalar_get_b32(&r[1], ar);
176  secp256k1_scalar_get_b32(&s[1], as);
177  while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
178  while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
179  if (*size < 6+lenS+lenR) {
180  *size = 6 + lenS + lenR;
181  return 0;
182  }
183  *size = 6 + lenS + lenR;
184  sig[0] = 0x30;
185  sig[1] = 4 + lenS + lenR;
186  sig[2] = 0x02;
187  sig[3] = lenR;
188  memcpy(sig+4, rp, lenR);
189  sig[4+lenR] = 0x02;
190  sig[5+lenR] = lenS;
191  memcpy(sig+lenR+6, sp, lenS);
192  return 1;
193 }
194 
195 static int secp256k1_ecdsa_sig_verify(const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
196  unsigned char c[32];
197  secp256k1_scalar sn, u1, u2;
198 #if !defined(EXHAUSTIVE_TEST_ORDER)
199  secp256k1_fe xr;
200 #endif
201  secp256k1_gej pubkeyj;
202  secp256k1_gej pr;
203 
205  return 0;
206  }
207 
208  secp256k1_scalar_inverse_var(&sn, sigs);
209  secp256k1_scalar_mul(&u1, &sn, message);
210  secp256k1_scalar_mul(&u2, &sn, sigr);
211  secp256k1_gej_set_ge(&pubkeyj, pubkey);
212  secp256k1_ecmult(&pr, &pubkeyj, &u2, &u1);
213  if (secp256k1_gej_is_infinity(&pr)) {
214  return 0;
215  }
216 
217 #if defined(EXHAUSTIVE_TEST_ORDER)
218 {
219  secp256k1_scalar computed_r;
220  secp256k1_ge pr_ge;
221  secp256k1_ge_set_gej(&pr_ge, &pr);
222  secp256k1_fe_normalize(&pr_ge.x);
223 
224  secp256k1_fe_get_b32(c, &pr_ge.x);
225  secp256k1_scalar_set_b32(&computed_r, c, NULL);
226  return secp256k1_scalar_eq(sigr, &computed_r);
227 }
228 #else
229  secp256k1_scalar_get_b32(c, sigr);
230  /* we can ignore the fe_set_b32_limit return value, because we know the input is in range */
231  (void)secp256k1_fe_set_b32_limit(&xr, c);
232 
249  if (secp256k1_gej_eq_x_var(&xr, &pr)) {
250  /* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
251  return 1;
252  }
254  /* xr + n >= p, so we can skip testing the second case. */
255  return 0;
256  }
258  if (secp256k1_gej_eq_x_var(&xr, &pr)) {
259  /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
260  return 1;
261  }
262  return 0;
263 #endif
264 }
265 
266 static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
267  unsigned char b[32];
268  secp256k1_gej rp;
269  secp256k1_ge r;
271  int overflow = 0;
272  int high;
273 
274  secp256k1_ecmult_gen(ctx, &rp, nonce);
275  secp256k1_ge_set_gej(&r, &rp);
278  secp256k1_fe_get_b32(b, &r.x);
279  secp256k1_scalar_set_b32(sigr, b, &overflow);
280  if (recid) {
281  /* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
282  * of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
283  */
284  *recid = (overflow << 1) | secp256k1_fe_is_odd(&r.y);
285  }
286  secp256k1_scalar_mul(&n, sigr, seckey);
287  secp256k1_scalar_add(&n, &n, message);
289  secp256k1_scalar_mul(sigs, sigs, &n);
291  secp256k1_gej_clear(&rp);
292  secp256k1_ge_clear(&r);
293  high = secp256k1_scalar_is_high(sigs);
294  secp256k1_scalar_cond_negate(sigs, high);
295  if (recid) {
296  *recid ^= high;
297  }
298  /* P.x = order is on the curve, so technically sig->r could end up being zero, which would be an invalid signature.
299  * This is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N.
300  */
301  return (int)(!secp256k1_scalar_is_zero(sigr)) & (int)(!secp256k1_scalar_is_zero(sigs));
302 }
303 
304 #endif /* SECP256K1_ECDSA_IMPL_H */
static int secp256k1_ecdsa_sig_verify(const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message)
Definition: ecdsa_impl.h:195
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order
Difference between field and order, values 'p' and 'n' values defined in "Standards for Efficient Cry...
Definition: ecdsa_impl.h:32
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid)
Definition: ecdsa_impl.h:266
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe
Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2....
Definition: ecdsa_impl.h:22
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *ar, const secp256k1_scalar *as)
Definition: ecdsa_impl.h:171
static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend)
Definition: ecdsa_impl.h:90
static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend)
Definition: ecdsa_impl.h:36
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size)
Definition: ecdsa_impl.h:141
static void secp256k1_ecmult(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng)
Double multiply: R = na*A + ng*G.
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *a)
Multiply with the generator: R = a*G.
#define secp256k1_fe_cmp_var
Definition: field.h:87
#define secp256k1_fe_is_odd
Definition: field.h:86
#define secp256k1_fe_add
Definition: field.h:93
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0)
This expands to an initializer for a secp256k1_fe valued sum((i*32) * d_i, i=0..7) mod p.
Definition: field.h:66
#define secp256k1_fe_set_b32_limit
Definition: field.h:89
#define secp256k1_fe_get_b32
Definition: field.h:90
#define secp256k1_fe_normalize
Definition: field.h:78
static void secp256k1_gej_clear(secp256k1_gej *r)
Clear a secp256k1_gej to prevent leaking sensitive information.
static int secp256k1_gej_is_infinity(const secp256k1_gej *a)
Check whether a group element is the point at infinity.
static void secp256k1_ge_clear(secp256k1_ge *r)
Clear a secp256k1_ge to prevent leaking sensitive information.
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a)
Compare the X coordinate of a group element (jacobian).
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a)
Set a group element equal to another which is given in jacobian coordinates.
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a)
Set a group element (jacobian) equal to another which is given in affine coordinates.
unsigned int nonce
Definition: miner_tests.cpp:71
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow)
Set a scalar from a big endian byte array.
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a)
Check whether a scalar equals zero.
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v)
Set a scalar to an unsigned integer.
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b)
Compare two scalars.
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar *a)
Convert a scalar to a byte array.
static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag)
Conditionally negate a number, in constant time.
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order), without constant-time guarantee.
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Add two scalars together (modulo the group order).
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b)
Multiply two scalars (modulo the group order).
static int secp256k1_scalar_is_high(const secp256k1_scalar *a)
Check whether a scalar is higher than the group order divided by 2.
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a)
Compute the inverse of a scalar (modulo the group order).
static void secp256k1_scalar_clear(secp256k1_scalar *r)
Clear a scalar to prevent the leak of sensitive data.
#define VERIFY_CHECK(cond)
Definition: util.h:153
This field implementation represents the value as 10 uint32_t limbs in base 2^26.
Definition: field_10x26.h:14
A group element in affine coordinates on the secp256k1 curve, or occasionally on an isomorphic curve ...
Definition: group.h:16
secp256k1_fe x
Definition: group.h:17
secp256k1_fe y
Definition: group.h:18
A group element of the secp256k1 curve, in jacobian coordinates.
Definition: group.h:28
A scalar modulo the group order of the secp256k1 curve.
Definition: scalar_4x64.h:13