doom3-gpl
Doom 3 GPL source release
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
jidctint.c
Go to the documentation of this file.
1 /*
2  * jidctint.c
3  *
4  * Copyright (C) 1991-1994, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains a slow-but-accurate integer implementation of the
9  * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
10  * must also perform dequantization of the input coefficients.
11  *
12  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
13  * on each row (or vice versa, but it's more convenient to emit a row at
14  * a time). Direct algorithms are also available, but they are much more
15  * complex and seem not to be any faster when reduced to code.
16  *
17  * This implementation is based on an algorithm described in
18  * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
19  * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
20  * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
21  * The primary algorithm described there uses 11 multiplies and 29 adds.
22  * We use their alternate method with 12 multiplies and 32 adds.
23  * The advantage of this method is that no data path contains more than one
24  * multiplication; this allows a very simple and accurate implementation in
25  * scaled fixed-point arithmetic, with a minimal number of shifts.
26  */
27 
28 #define JPEG_INTERNALS
29 #include "jinclude.h"
30 #include "jpeglib.h"
31 #include "jdct.h" /* Private declarations for DCT subsystem */
32 
33 #ifdef DCT_ISLOW_SUPPORTED
34 
35 
36 /*
37  * This module is specialized to the case DCTSIZE = 8.
38  */
39 
40 #if DCTSIZE != 8
41  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
42 #endif
43 
44 
45 /*
46  * The poop on this scaling stuff is as follows:
47  *
48  * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
49  * larger than the true IDCT outputs. The final outputs are therefore
50  * a factor of N larger than desired; since N=8 this can be cured by
51  * a simple right shift at the end of the algorithm. The advantage of
52  * this arrangement is that we save two multiplications per 1-D IDCT,
53  * because the y0 and y4 inputs need not be divided by sqrt(N).
54  *
55  * We have to do addition and subtraction of the integer inputs, which
56  * is no problem, and multiplication by fractional constants, which is
57  * a problem to do in integer arithmetic. We multiply all the constants
58  * by CONST_SCALE and convert them to integer constants (thus retaining
59  * CONST_BITS bits of precision in the constants). After doing a
60  * multiplication we have to divide the product by CONST_SCALE, with proper
61  * rounding, to produce the correct output. This division can be done
62  * cheaply as a right shift of CONST_BITS bits. We postpone shifting
63  * as long as possible so that partial sums can be added together with
64  * full fractional precision.
65  *
66  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
67  * they are represented to better-than-integral precision. These outputs
68  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
69  * with the recommended scaling. (To scale up 12-bit sample data further, an
70  * intermediate INT32 array would be needed.)
71  *
72  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
73  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
74  * shows that the values given below are the most effective.
75  */
76 
77 #if BITS_IN_JSAMPLE == 8
78 #define CONST_BITS 13
79 #define PASS1_BITS 2
80 #else
81 #define CONST_BITS 13
82 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
83 #endif
84 
85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86  * causing a lot of useless floating-point operations at run time.
87  * To get around this we use the following pre-calculated constants.
88  * If you change CONST_BITS you may want to add appropriate values.
89  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
90  */
91 
92 #if CONST_BITS == 13
93 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
94 #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
95 #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
96 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
97 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
98 #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
99 #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
100 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
101 #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
102 #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
103 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
104 #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
105 #else
106 #define FIX_0_298631336 FIX(0.298631336)
107 #define FIX_0_390180644 FIX(0.390180644)
108 #define FIX_0_541196100 FIX(0.541196100)
109 #define FIX_0_765366865 FIX(0.765366865)
110 #define FIX_0_899976223 FIX(0.899976223)
111 #define FIX_1_175875602 FIX(1.175875602)
112 #define FIX_1_501321110 FIX(1.501321110)
113 #define FIX_1_847759065 FIX(1.847759065)
114 #define FIX_1_961570560 FIX(1.961570560)
115 #define FIX_2_053119869 FIX(2.053119869)
116 #define FIX_2_562915447 FIX(2.562915447)
117 #define FIX_3_072711026 FIX(3.072711026)
118 #endif
119 
120 
121 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
122  * For 8-bit samples with the recommended scaling, all the variable
123  * and constant values involved are no more than 16 bits wide, so a
124  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
125  * For 12-bit samples, a full 32-bit multiplication will be needed.
126  */
127 
128 #if BITS_IN_JSAMPLE == 8
129 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
130 #else
131 #define MULTIPLY(var,const) ((var) * (const))
132 #endif
133 
134 
135 /* Dequantize a coefficient by multiplying it by the multiplier-table
136  * entry; produce an int result. In this module, both inputs and result
137  * are 16 bits or less, so either int or short multiply will work.
138  */
139 
140 #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
141 
142 
143 /*
144  * Perform dequantization and inverse DCT on one block of coefficients.
145  */
146 
147 GLOBAL void
148 jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
149  JCOEFPTR coef_block,
150  JSAMPARRAY output_buf, JDIMENSION output_col)
151 {
152  INT32 tmp0, tmp1, tmp2, tmp3;
153  INT32 tmp10, tmp11, tmp12, tmp13;
154  INT32 z1, z2, z3, z4, z5;
155  JCOEFPTR inptr;
156  ISLOW_MULT_TYPE * quantptr;
157  int * wsptr;
158  JSAMPROW outptr;
159  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
160  int ctr;
161  int workspace[DCTSIZE2]; /* buffers data between passes */
163 
164  /* Pass 1: process columns from input, store into work array. */
165  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
166  /* furthermore, we scale the results by 2**PASS1_BITS. */
167 
168  inptr = coef_block;
169  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
170  wsptr = workspace;
171  for (ctr = DCTSIZE; ctr > 0; ctr--) {
172  /* Due to quantization, we will usually find that many of the input
173  * coefficients are zero, especially the AC terms. We can exploit this
174  * by short-circuiting the IDCT calculation for any column in which all
175  * the AC terms are zero. In that case each output is equal to the
176  * DC coefficient (with scale factor as needed).
177  * With typical images and quantization tables, half or more of the
178  * column DCT calculations can be simplified this way.
179  */
180 
181  if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
182  inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
183  inptr[DCTSIZE*7]) == 0) {
184  /* AC terms all zero */
185  int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
186 
187  wsptr[DCTSIZE*0] = dcval;
188  wsptr[DCTSIZE*1] = dcval;
189  wsptr[DCTSIZE*2] = dcval;
190  wsptr[DCTSIZE*3] = dcval;
191  wsptr[DCTSIZE*4] = dcval;
192  wsptr[DCTSIZE*5] = dcval;
193  wsptr[DCTSIZE*6] = dcval;
194  wsptr[DCTSIZE*7] = dcval;
195 
196  inptr++; /* advance pointers to next column */
197  quantptr++;
198  wsptr++;
199  continue;
200  }
201 
202  /* Even part: reverse the even part of the forward DCT. */
203  /* The rotator is sqrt(2)*c(-6). */
204 
205  z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
206  z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
207 
208  z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
209  tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
210  tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
211 
212  z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
213  z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
214 
215  tmp0 = (z2 + z3) << CONST_BITS;
216  tmp1 = (z2 - z3) << CONST_BITS;
217 
218  tmp10 = tmp0 + tmp3;
219  tmp13 = tmp0 - tmp3;
220  tmp11 = tmp1 + tmp2;
221  tmp12 = tmp1 - tmp2;
222 
223  /* Odd part per figure 8; the matrix is unitary and hence its
224  * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
225  */
226 
227  tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
228  tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
229  tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
230  tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
231 
232  z1 = tmp0 + tmp3;
233  z2 = tmp1 + tmp2;
234  z3 = tmp0 + tmp2;
235  z4 = tmp1 + tmp3;
236  z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
237 
238  tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
239  tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
240  tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
241  tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
242  z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
243  z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
244  z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
245  z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
246 
247  z3 += z5;
248  z4 += z5;
249 
250  tmp0 += z1 + z3;
251  tmp1 += z2 + z4;
252  tmp2 += z2 + z3;
253  tmp3 += z1 + z4;
254 
255  /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
256 
257  wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
258  wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
259  wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
260  wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
261  wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
262  wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
263  wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
264  wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
265 
266  inptr++; /* advance pointers to next column */
267  quantptr++;
268  wsptr++;
269  }
270 
271  /* Pass 2: process rows from work array, store into output array. */
272  /* Note that we must descale the results by a factor of 8 == 2**3, */
273  /* and also undo the PASS1_BITS scaling. */
274 
275  wsptr = workspace;
276  for (ctr = 0; ctr < DCTSIZE; ctr++) {
277  outptr = output_buf[ctr] + output_col;
278  /* Rows of zeroes can be exploited in the same way as we did with columns.
279  * However, the column calculation has created many nonzero AC terms, so
280  * the simplification applies less often (typically 5% to 10% of the time).
281  * On machines with very fast multiplication, it's possible that the
282  * test takes more time than it's worth. In that case this section
283  * may be commented out.
284  */
285 
286 #ifndef NO_ZERO_ROW_TEST
287  if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] |
288  wsptr[7]) == 0) {
289  /* AC terms all zero */
290  JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
291  & RANGE_MASK];
292 
293  outptr[0] = dcval;
294  outptr[1] = dcval;
295  outptr[2] = dcval;
296  outptr[3] = dcval;
297  outptr[4] = dcval;
298  outptr[5] = dcval;
299  outptr[6] = dcval;
300  outptr[7] = dcval;
301 
302  wsptr += DCTSIZE; /* advance pointer to next row */
303  continue;
304  }
305 #endif
306 
307  /* Even part: reverse the even part of the forward DCT. */
308  /* The rotator is sqrt(2)*c(-6). */
309 
310  z2 = (INT32) wsptr[2];
311  z3 = (INT32) wsptr[6];
312 
313  z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
314  tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
315  tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
316 
317  tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
318  tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
319 
320  tmp10 = tmp0 + tmp3;
321  tmp13 = tmp0 - tmp3;
322  tmp11 = tmp1 + tmp2;
323  tmp12 = tmp1 - tmp2;
324 
325  /* Odd part per figure 8; the matrix is unitary and hence its
326  * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
327  */
328 
329  tmp0 = (INT32) wsptr[7];
330  tmp1 = (INT32) wsptr[5];
331  tmp2 = (INT32) wsptr[3];
332  tmp3 = (INT32) wsptr[1];
333 
334  z1 = tmp0 + tmp3;
335  z2 = tmp1 + tmp2;
336  z3 = tmp0 + tmp2;
337  z4 = tmp1 + tmp3;
338  z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
339 
340  tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
341  tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
342  tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
343  tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
344  z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
345  z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
346  z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
347  z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
348 
349  z3 += z5;
350  z4 += z5;
351 
352  tmp0 += z1 + z3;
353  tmp1 += z2 + z4;
354  tmp2 += z2 + z3;
355  tmp3 += z1 + z4;
356 
357  /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
358 
359  outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
360  CONST_BITS+PASS1_BITS+3)
361  & RANGE_MASK];
362  outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
363  CONST_BITS+PASS1_BITS+3)
364  & RANGE_MASK];
365  outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
366  CONST_BITS+PASS1_BITS+3)
367  & RANGE_MASK];
368  outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
369  CONST_BITS+PASS1_BITS+3)
370  & RANGE_MASK];
371  outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
372  CONST_BITS+PASS1_BITS+3)
373  & RANGE_MASK];
374  outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
375  CONST_BITS+PASS1_BITS+3)
376  & RANGE_MASK];
377  outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
378  CONST_BITS+PASS1_BITS+3)
379  & RANGE_MASK];
380  outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
381  CONST_BITS+PASS1_BITS+3)
382  & RANGE_MASK];
383 
384  wsptr += DCTSIZE; /* advance pointer to next row */
385  }
386 }
387 
388 #endif /* DCT_ISLOW_SUPPORTED */
#define DESCALE(x, n)
Definition: jdct.h:146
#define IDCT_range_limit(cinfo)
Definition: jdct.h:76
char JSAMPLE
Definition: jmorecfg.h:64
JSAMPLE FAR * JSAMPROW
Definition: jpeglib.h:79
case const int
Definition: Callbacks.cpp:52
#define RANGE_MASK
Definition: jdct.h:78
long INT32
Definition: jmorecfg.h:154
#define SHIFT_TEMPS
Definition: jpegint.h:287
#define DCTSIZE2
Definition: jpeglib.h:43
MULTIPLIER ISLOW_MULT_TYPE
Definition: jdct.h:56
JCOEF FAR * JCOEFPTR
Definition: jpeglib.h:88
#define GLOBAL
Definition: jmorecfg.h:190
JSAMPROW * JSAMPARRAY
Definition: jpeglib.h:80
#define DCTSIZE
Definition: jpeglib.h:42
unsigned int JDIMENSION
Definition: jmorecfg.h:177
#define DEQUANTIZE(coef, quantval)
Definition: jidctflt.c:60