doom3-gpl
Doom 3 GPL source release
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
jchuff.c
Go to the documentation of this file.
1 /*
2  * jchuff.c
3  *
4  * Copyright (C) 1991-1995, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy encoding routines.
9  *
10  * Much of the complexity here has to do with supporting output suspension.
11  * If the data destination module demands suspension, we want to be able to
12  * back up to the start of the current MCU. To do this, we copy state
13  * variables into local working storage, and update them back to the
14  * permanent JPEG objects only upon successful completion of an MCU.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jchuff.h" /* Declarations shared with jcphuff.c */
21 
22 
23 /* Expanded entropy encoder object for Huffman encoding.
24  *
25  * The savable_state subrecord contains fields that change within an MCU,
26  * but must not be updated permanently until we complete the MCU.
27  */
28 
29 typedef struct {
30  INT32 put_buffer; /* current bit-accumulation buffer */
31  int put_bits; /* # of bits now in it */
32  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
34 
35 /* This macro is to work around compilers with missing or broken
36  * structure assignment. You'll need to fix this code if you have
37  * such a compiler and you change MAX_COMPS_IN_SCAN.
38  */
39 
40 #ifndef NO_STRUCT_ASSIGN
41 #define ASSIGN_STATE(dest,src) ((dest) = (src))
42 #else
43 #if MAX_COMPS_IN_SCAN == 4
44 #define ASSIGN_STATE(dest,src) \
45  ((dest).put_buffer = (src).put_buffer, \
46  (dest).put_bits = (src).put_bits, \
47  (dest).last_dc_val[0] = (src).last_dc_val[0], \
48  (dest).last_dc_val[1] = (src).last_dc_val[1], \
49  (dest).last_dc_val[2] = (src).last_dc_val[2], \
50  (dest).last_dc_val[3] = (src).last_dc_val[3])
51 #endif
52 #endif
53 
54 
55 typedef struct {
56  struct jpeg_entropy_encoder pub; /* public fields */
57 
58  savable_state saved; /* Bit buffer & DC state at start of MCU */
59 
60  /* These fields are NOT loaded into local working state. */
61  unsigned int restarts_to_go; /* MCUs left in this restart interval */
62  int next_restart_num; /* next restart number to write (0-7) */
63 
64  /* Pointers to derived tables (these workspaces have image lifespan) */
65  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
66  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
67 
68 #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
69  long * dc_count_ptrs[NUM_HUFF_TBLS];
70  long * ac_count_ptrs[NUM_HUFF_TBLS];
71 #endif
73 
75 
76 /* Working state while writing an MCU.
77  * This struct contains all the fields that are needed by subroutines.
78  */
79 
80 typedef struct {
81  JOCTET * next_output_byte; /* => next byte to write in buffer */
82  size_t free_in_buffer; /* # of byte spaces remaining in buffer */
83  savable_state cur; /* Current bit buffer & DC state */
84  j_compress_ptr cinfo; /* dump_buffer needs access to this */
86 
87 
88 /* Forward declarations */
90  JBLOCKROW *MCU_data));
92 #ifdef ENTROPY_OPT_SUPPORTED
94  JBLOCKROW *MCU_data));
96 #endif
97 
98 
99 /*
100  * Initialize for a Huffman-compressed scan.
101  * If gather_statistics is TRUE, we do not output anything during the scan,
102  * just count the Huffman symbols used and generate Huffman code tables.
103  */
104 
105 METHODDEF void
106 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
107 {
108  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
109  int ci, dctbl, actbl;
110  jpeg_component_info * compptr;
111 
112  if (gather_statistics) {
113 #ifdef ENTROPY_OPT_SUPPORTED
114  entropy->pub.encode_mcu = encode_mcu_gather;
115  entropy->pub.finish_pass = finish_pass_gather;
116 #else
117  ERREXIT(cinfo, JERR_NOT_COMPILED);
118 #endif
119  } else {
120  entropy->pub.encode_mcu = encode_mcu_huff;
121  entropy->pub.finish_pass = finish_pass_huff;
122  }
123 
124  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
125  compptr = cinfo->cur_comp_info[ci];
126  dctbl = compptr->dc_tbl_no;
127  actbl = compptr->ac_tbl_no;
128  /* Make sure requested tables are present */
129  /* (In gather mode, tables need not be allocated yet) */
130  if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS ||
131  (cinfo->dc_huff_tbl_ptrs[dctbl] == NULL && !gather_statistics))
132  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
133  if (actbl < 0 || actbl >= NUM_HUFF_TBLS ||
134  (cinfo->ac_huff_tbl_ptrs[actbl] == NULL && !gather_statistics))
135  ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
136  if (gather_statistics) {
137 #ifdef ENTROPY_OPT_SUPPORTED
138  /* Allocate and zero the statistics tables */
139  /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
140  if (entropy->dc_count_ptrs[dctbl] == NULL)
141  entropy->dc_count_ptrs[dctbl] = (long *)
142  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
143  257 * SIZEOF(long));
144  MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
145  if (entropy->ac_count_ptrs[actbl] == NULL)
146  entropy->ac_count_ptrs[actbl] = (long *)
147  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
148  257 * SIZEOF(long));
149  MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
150 #endif
151  } else {
152  /* Compute derived values for Huffman tables */
153  /* We may do this more than once for a table, but it's not expensive */
154  jpeg_make_c_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
155  & entropy->dc_derived_tbls[dctbl]);
156  jpeg_make_c_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
157  & entropy->ac_derived_tbls[actbl]);
158  }
159  /* Initialize DC predictions to 0 */
160  entropy->saved.last_dc_val[ci] = 0;
161  }
162 
163  /* Initialize bit buffer to empty */
164  entropy->saved.put_buffer = 0;
165  entropy->saved.put_bits = 0;
166 
167  /* Initialize restart stuff */
168  entropy->restarts_to_go = cinfo->restart_interval;
169  entropy->next_restart_num = 0;
170 }
171 
172 
173 /*
174  * Compute the derived values for a Huffman table.
175  * Note this is also used by jcphuff.c.
176  */
177 
178 GLOBAL void
180  c_derived_tbl ** pdtbl)
181 {
182  c_derived_tbl *dtbl;
183  int p, i, l, lastp, si;
184  char huffsize[257];
185  unsigned int huffcode[257];
186  unsigned int code;
187 
188  /* Allocate a workspace if we haven't already done so. */
189  if (*pdtbl == NULL)
190  *pdtbl = (c_derived_tbl *)
191  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
193  dtbl = *pdtbl;
194 
195  /* Figure C.1: make table of Huffman code length for each symbol */
196  /* Note that this is in code-length order. */
197 
198  p = 0;
199  for (l = 1; l <= 16; l++) {
200  for (i = 1; i <= (int) htbl->bits[l]; i++)
201  huffsize[p++] = (char) l;
202  }
203  huffsize[p] = 0;
204  lastp = p;
205 
206  /* Figure C.2: generate the codes themselves */
207  /* Note that this is in code-length order. */
208 
209  code = 0;
210  si = huffsize[0];
211  p = 0;
212  while (huffsize[p]) {
213  while (((int) huffsize[p]) == si) {
214  huffcode[p++] = code;
215  code++;
216  }
217  code <<= 1;
218  si++;
219  }
220 
221  /* Figure C.3: generate encoding tables */
222  /* These are code and size indexed by symbol value */
223 
224  /* Set any codeless symbols to have code length 0;
225  * this allows emit_bits to detect any attempt to emit such symbols.
226  */
227  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
228 
229  for (p = 0; p < lastp; p++) {
230  dtbl->ehufco[htbl->huffval[p]] = huffcode[p];
231  dtbl->ehufsi[htbl->huffval[p]] = huffsize[p];
232  }
233 }
234 
235 
236 /* Outputting bytes to the file */
237 
238 /* Emit a byte, taking 'action' if must suspend. */
239 #define emit_byte(state,val,action) \
240  { *(state)->next_output_byte++ = (JOCTET) (val); \
241  if (--(state)->free_in_buffer == 0) \
242  if (! dump_buffer(state)) \
243  { action; } }
244 
245 
246 LOCAL boolean
248 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
249 {
250  struct jpeg_destination_mgr * dest = state->cinfo->dest;
251 
252  if (! (*dest->empty_output_buffer) (state->cinfo))
253  return FALSE;
254  /* After a successful buffer dump, must reset buffer pointers */
255  state->next_output_byte = dest->next_output_byte;
256  state->free_in_buffer = dest->free_in_buffer;
257  return TRUE;
258 }
259 
260 
261 /* Outputting bits to the file */
262 
263 /* Only the right 24 bits of put_buffer are used; the valid bits are
264  * left-justified in this part. At most 16 bits can be passed to emit_bits
265  * in one call, and we never retain more than 7 bits in put_buffer
266  * between calls, so 24 bits are sufficient.
267  */
268 
269 INLINE
270 LOCAL boolean
271 emit_bits (working_state * state, unsigned int code, int size)
272 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
273 {
274  /* This routine is heavily used, so it's worth coding tightly. */
275  register INT32 put_buffer = (INT32) code;
276  register int put_bits = state->cur.put_bits;
277 
278  /* if size is 0, caller used an invalid Huffman table entry */
279  if (size == 0)
280  ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
281 
282  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
283 
284  put_bits += size; /* new number of bits in buffer */
285 
286  put_buffer <<= 24 - put_bits; /* align incoming bits */
287 
288  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
289 
290  while (put_bits >= 8) {
291  int c = (int) ((put_buffer >> 16) & 0xFF);
292 
293  emit_byte(state, c, return FALSE);
294  if (c == 0xFF) { /* need to stuff a zero byte? */
295  emit_byte(state, 0, return FALSE);
296  }
297  put_buffer <<= 8;
298  put_bits -= 8;
299  }
300 
301  state->cur.put_buffer = put_buffer; /* update state variables */
302  state->cur.put_bits = put_bits;
303 
304  return TRUE;
305 }
306 
307 
308 LOCAL boolean
310 {
311  if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
312  return FALSE;
313  state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
314  state->cur.put_bits = 0;
315  return TRUE;
316 }
317 
318 
319 /* Encode a single block's worth of coefficients */
320 
321 LOCAL boolean
322 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
323  c_derived_tbl *dctbl, c_derived_tbl *actbl)
324 {
325  register int temp, temp2;
326  register int nbits;
327  register int k, r, i;
328 
329  /* Encode the DC coefficient difference per section F.1.2.1 */
330 
331  temp = temp2 = block[0] - last_dc_val;
332 
333  if (temp < 0) {
334  temp = -temp; /* temp is abs value of input */
335  /* For a negative input, want temp2 = bitwise complement of abs(input) */
336  /* This code assumes we are on a two's complement machine */
337  temp2--;
338  }
339 
340  /* Find the number of bits needed for the magnitude of the coefficient */
341  nbits = 0;
342  while (temp) {
343  nbits++;
344  temp >>= 1;
345  }
346 
347  /* Emit the Huffman-coded symbol for the number of bits */
348  if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
349  return FALSE;
350 
351  /* Emit that number of bits of the value, if positive, */
352  /* or the complement of its magnitude, if negative. */
353  if (nbits) /* emit_bits rejects calls with size 0 */
354  if (! emit_bits(state, (unsigned int) temp2, nbits))
355  return FALSE;
356 
357  /* Encode the AC coefficients per section F.1.2.2 */
358 
359  r = 0; /* r = run length of zeros */
360 
361  for (k = 1; k < DCTSIZE2; k++) {
362  if ((temp = block[jpeg_natural_order[k]]) == 0) {
363  r++;
364  } else {
365  /* if run length > 15, must emit special run-length-16 codes (0xF0) */
366  while (r > 15) {
367  if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
368  return FALSE;
369  r -= 16;
370  }
371 
372  temp2 = temp;
373  if (temp < 0) {
374  temp = -temp; /* temp is abs value of input */
375  /* This code assumes we are on a two's complement machine */
376  temp2--;
377  }
378 
379  /* Find the number of bits needed for the magnitude of the coefficient */
380  nbits = 1; /* there must be at least one 1 bit */
381  while ((temp >>= 1))
382  nbits++;
383 
384  /* Emit Huffman symbol for run length / number of bits */
385  i = (r << 4) + nbits;
386  if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
387  return FALSE;
388 
389  /* Emit that number of bits of the value, if positive, */
390  /* or the complement of its magnitude, if negative. */
391  if (! emit_bits(state, (unsigned int) temp2, nbits))
392  return FALSE;
393 
394  r = 0;
395  }
396  }
397 
398  /* If the last coef(s) were zero, emit an end-of-block code */
399  if (r > 0)
400  if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
401  return FALSE;
402 
403  return TRUE;
404 }
405 
406 
407 /*
408  * Emit a restart marker & resynchronize predictions.
409  */
410 
411 LOCAL boolean
412 emit_restart (working_state * state, int restart_num)
413 {
414  int ci;
415 
416  if (! flush_bits(state))
417  return FALSE;
418 
419  emit_byte(state, 0xFF, return FALSE);
420  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
421 
422  /* Re-initialize DC predictions to 0 */
423  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
424  state->cur.last_dc_val[ci] = 0;
425 
426  /* The restart counter is not updated until we successfully write the MCU. */
427 
428  return TRUE;
429 }
430 
431 
432 /*
433  * Encode and output one MCU's worth of Huffman-compressed coefficients.
434  */
435 
436 METHODDEF boolean
438 {
439  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
440  working_state state;
441  int blkn, ci;
442  jpeg_component_info * compptr;
443 
444  /* Load up working state */
445  state.next_output_byte = cinfo->dest->next_output_byte;
446  state.free_in_buffer = cinfo->dest->free_in_buffer;
447  ASSIGN_STATE(state.cur, entropy->saved);
448  state.cinfo = cinfo;
449 
450  /* Emit restart marker if needed */
451  if (cinfo->restart_interval) {
452  if (entropy->restarts_to_go == 0)
453  if (! emit_restart(&state, entropy->next_restart_num))
454  return FALSE;
455  }
456 
457  /* Encode the MCU data blocks */
458  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
459  ci = cinfo->MCU_membership[blkn];
460  compptr = cinfo->cur_comp_info[ci];
461  if (! encode_one_block(&state,
462  MCU_data[blkn][0], state.cur.last_dc_val[ci],
463  entropy->dc_derived_tbls[compptr->dc_tbl_no],
464  entropy->ac_derived_tbls[compptr->ac_tbl_no]))
465  return FALSE;
466  /* Update last_dc_val */
467  state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
468  }
469 
470  /* Completed MCU, so update state */
471  cinfo->dest->next_output_byte = state.next_output_byte;
472  cinfo->dest->free_in_buffer = state.free_in_buffer;
473  ASSIGN_STATE(entropy->saved, state.cur);
474 
475  /* Update restart-interval state too */
476  if (cinfo->restart_interval) {
477  if (entropy->restarts_to_go == 0) {
478  entropy->restarts_to_go = cinfo->restart_interval;
479  entropy->next_restart_num++;
480  entropy->next_restart_num &= 7;
481  }
482  entropy->restarts_to_go--;
483  }
484 
485  return TRUE;
486 }
487 
488 
489 /*
490  * Finish up at the end of a Huffman-compressed scan.
491  */
492 
493 METHODDEF void
495 {
496  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
497  working_state state;
498 
499  /* Load up working state ... flush_bits needs it */
500  state.next_output_byte = cinfo->dest->next_output_byte;
501  state.free_in_buffer = cinfo->dest->free_in_buffer;
502  ASSIGN_STATE(state.cur, entropy->saved);
503  state.cinfo = cinfo;
504 
505  /* Flush out the last data */
506  if (! flush_bits(&state))
507  ERREXIT(cinfo, JERR_CANT_SUSPEND);
508 
509  /* Update state */
510  cinfo->dest->next_output_byte = state.next_output_byte;
511  cinfo->dest->free_in_buffer = state.free_in_buffer;
512  ASSIGN_STATE(entropy->saved, state.cur);
513 }
514 
515 
516 /*
517  * Huffman coding optimization.
518  *
519  * This actually is optimization, in the sense that we find the best possible
520  * Huffman table(s) for the given data. We first scan the supplied data and
521  * count the number of uses of each symbol that is to be Huffman-coded.
522  * (This process must agree with the code above.) Then we build an
523  * optimal Huffman coding tree for the observed counts.
524  *
525  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
526  * If some symbols have a very small but nonzero probability, the Huffman tree
527  * must be adjusted to meet the code length restriction. We currently use
528  * the adjustment method suggested in the JPEG spec. This method is *not*
529  * optimal; it may not choose the best possible limited-length code. But
530  * since the symbols involved are infrequently used, it's not clear that
531  * going to extra trouble is worthwhile.
532  */
533 
534 #ifdef ENTROPY_OPT_SUPPORTED
535 
536 
537 /* Process a single block's worth of coefficients */
538 
539 LOCAL void
540 htest_one_block (JCOEFPTR block, int last_dc_val,
541  long dc_counts[], long ac_counts[])
542 {
543  register int temp;
544  register int nbits;
545  register int k, r;
546 
547  /* Encode the DC coefficient difference per section F.1.2.1 */
548 
549  temp = block[0] - last_dc_val;
550  if (temp < 0)
551  temp = -temp;
552 
553  /* Find the number of bits needed for the magnitude of the coefficient */
554  nbits = 0;
555  while (temp) {
556  nbits++;
557  temp >>= 1;
558  }
559 
560  /* Count the Huffman symbol for the number of bits */
561  dc_counts[nbits]++;
562 
563  /* Encode the AC coefficients per section F.1.2.2 */
564 
565  r = 0; /* r = run length of zeros */
566 
567  for (k = 1; k < DCTSIZE2; k++) {
568  if ((temp = block[jpeg_natural_order[k]]) == 0) {
569  r++;
570  } else {
571  /* if run length > 15, must emit special run-length-16 codes (0xF0) */
572  while (r > 15) {
573  ac_counts[0xF0]++;
574  r -= 16;
575  }
576 
577  /* Find the number of bits needed for the magnitude of the coefficient */
578  if (temp < 0)
579  temp = -temp;
580 
581  /* Find the number of bits needed for the magnitude of the coefficient */
582  nbits = 1; /* there must be at least one 1 bit */
583  while ((temp >>= 1))
584  nbits++;
585 
586  /* Count Huffman symbol for run length / number of bits */
587  ac_counts[(r << 4) + nbits]++;
588 
589  r = 0;
590  }
591  }
592 
593  /* If the last coef(s) were zero, emit an end-of-block code */
594  if (r > 0)
595  ac_counts[0]++;
596 }
597 
598 
599 /*
600  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
601  * No data is actually output, so no suspension return is possible.
602  */
603 
604 METHODDEF boolean
606 {
607  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
608  int blkn, ci;
609  jpeg_component_info * compptr;
610 
611  /* Take care of restart intervals if needed */
612  if (cinfo->restart_interval) {
613  if (entropy->restarts_to_go == 0) {
614  /* Re-initialize DC predictions to 0 */
615  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
616  entropy->saved.last_dc_val[ci] = 0;
617  /* Update restart state */
618  entropy->restarts_to_go = cinfo->restart_interval;
619  }
620  entropy->restarts_to_go--;
621  }
622 
623  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
624  ci = cinfo->MCU_membership[blkn];
625  compptr = cinfo->cur_comp_info[ci];
626  htest_one_block(MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
627  entropy->dc_count_ptrs[compptr->dc_tbl_no],
628  entropy->ac_count_ptrs[compptr->ac_tbl_no]);
629  entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
630  }
631 
632  return TRUE;
633 }
634 
635 
636 /*
637  * Generate the optimal coding for the given counts, fill htbl.
638  * Note this is also used by jcphuff.c.
639  */
640 
641 GLOBAL void
642 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
643 {
644 #define MAX_CLEN 32 /* assumed maximum initial code length */
645  UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
646  int codesize[257]; /* codesize[k] = code length of symbol k */
647  int others[257]; /* next symbol in current branch of tree */
648  int c1, c2;
649  int p, i, j;
650  long v;
651 
652  /* This algorithm is explained in section K.2 of the JPEG standard */
653 
654  MEMZERO(bits, SIZEOF(bits));
655  MEMZERO(codesize, SIZEOF(codesize));
656  for (i = 0; i < 257; i++)
657  others[i] = -1; /* init links to empty */
658 
659  freq[256] = 1; /* make sure there is a nonzero count */
660  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
661  * that no real symbol is given code-value of all ones, because 256
662  * will be placed in the largest codeword category.
663  */
664 
665  /* Huffman's basic algorithm to assign optimal code lengths to symbols */
666 
667  for (;;) {
668  /* Find the smallest nonzero frequency, set c1 = its symbol */
669  /* In case of ties, take the larger symbol number */
670  c1 = -1;
671  v = 1000000000L;
672  for (i = 0; i <= 256; i++) {
673  if (freq[i] && freq[i] <= v) {
674  v = freq[i];
675  c1 = i;
676  }
677  }
678 
679  /* Find the next smallest nonzero frequency, set c2 = its symbol */
680  /* In case of ties, take the larger symbol number */
681  c2 = -1;
682  v = 1000000000L;
683  for (i = 0; i <= 256; i++) {
684  if (freq[i] && freq[i] <= v && i != c1) {
685  v = freq[i];
686  c2 = i;
687  }
688  }
689 
690  /* Done if we've merged everything into one frequency */
691  if (c2 < 0)
692  break;
693 
694  /* Else merge the two counts/trees */
695  freq[c1] += freq[c2];
696  freq[c2] = 0;
697 
698  /* Increment the codesize of everything in c1's tree branch */
699  codesize[c1]++;
700  while (others[c1] >= 0) {
701  c1 = others[c1];
702  codesize[c1]++;
703  }
704 
705  others[c1] = c2; /* chain c2 onto c1's tree branch */
706 
707  /* Increment the codesize of everything in c2's tree branch */
708  codesize[c2]++;
709  while (others[c2] >= 0) {
710  c2 = others[c2];
711  codesize[c2]++;
712  }
713  }
714 
715  /* Now count the number of symbols of each code length */
716  for (i = 0; i <= 256; i++) {
717  if (codesize[i]) {
718  /* The JPEG standard seems to think that this can't happen, */
719  /* but I'm paranoid... */
720  if (codesize[i] > MAX_CLEN)
721  ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
722 
723  bits[codesize[i]]++;
724  }
725  }
726 
727  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
728  * Huffman procedure assigned any such lengths, we must adjust the coding.
729  * Here is what the JPEG spec says about how this next bit works:
730  * Since symbols are paired for the longest Huffman code, the symbols are
731  * removed from this length category two at a time. The prefix for the pair
732  * (which is one bit shorter) is allocated to one of the pair; then,
733  * skipping the BITS entry for that prefix length, a code word from the next
734  * shortest nonzero BITS entry is converted into a prefix for two code words
735  * one bit longer.
736  */
737 
738  for (i = MAX_CLEN; i > 16; i--) {
739  while (bits[i] > 0) {
740  j = i - 2; /* find length of new prefix to be used */
741  while (bits[j] == 0)
742  j--;
743 
744  bits[i] -= 2; /* remove two symbols */
745  bits[i-1]++; /* one goes in this length */
746  bits[j+1] += 2; /* two new symbols in this length */
747  bits[j]--; /* symbol of this length is now a prefix */
748  }
749  }
750 
751  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
752  while (bits[i] == 0) /* find largest codelength still in use */
753  i--;
754  bits[i]--;
755 
756  /* Return final symbol counts (only for lengths 0..16) */
757  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
758 
759  /* Return a list of the symbols sorted by code length */
760  /* It's not real clear to me why we don't need to consider the codelength
761  * changes made above, but the JPEG spec seems to think this works.
762  */
763  p = 0;
764  for (i = 1; i <= MAX_CLEN; i++) {
765  for (j = 0; j <= 255; j++) {
766  if (codesize[j] == i) {
767  htbl->huffval[p] = (UINT8) j;
768  p++;
769  }
770  }
771  }
772 
773  /* Set sent_table FALSE so updated table will be written to JPEG file. */
774  htbl->sent_table = FALSE;
775 }
776 
777 
778 /*
779  * Finish up a statistics-gathering pass and create the new Huffman tables.
780  */
781 
782 METHODDEF void
784 {
785  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
786  int ci, dctbl, actbl;
787  jpeg_component_info * compptr;
788  JHUFF_TBL **htblptr;
789  boolean did_dc[NUM_HUFF_TBLS];
790  boolean did_ac[NUM_HUFF_TBLS];
791 
792  /* It's important not to apply jpeg_gen_optimal_table more than once
793  * per table, because it clobbers the input frequency counts!
794  */
795  MEMZERO(did_dc, SIZEOF(did_dc));
796  MEMZERO(did_ac, SIZEOF(did_ac));
797 
798  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
799  compptr = cinfo->cur_comp_info[ci];
800  dctbl = compptr->dc_tbl_no;
801  actbl = compptr->ac_tbl_no;
802  if (! did_dc[dctbl]) {
803  htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
804  if (*htblptr == NULL)
805  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
806  jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
807  did_dc[dctbl] = TRUE;
808  }
809  if (! did_ac[actbl]) {
810  htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
811  if (*htblptr == NULL)
812  *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
813  jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
814  did_ac[actbl] = TRUE;
815  }
816  }
817 }
818 
819 
820 #endif /* ENTROPY_OPT_SUPPORTED */
821 
822 
823 /*
824  * Module initialization routine for Huffman entropy encoding.
825  */
826 
827 GLOBAL void
829 {
830  huff_entropy_ptr entropy;
831  int i;
832 
833  entropy = (huff_entropy_ptr)
834  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
836  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
837  entropy->pub.start_pass = start_pass_huff;
838 
839  /* Mark tables unallocated */
840  for (i = 0; i < NUM_HUFF_TBLS; i++) {
841  entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
842 #ifdef ENTROPY_OPT_SUPPORTED
843  entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
844 #endif
845  }
846 }
j_compress_ptr cinfo
Definition: jchuff.c:84
JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]
Definition: jpeglib.h:304
METHODDEF void finish_pass_gather(j_compress_ptr cinfo)
Definition: jchuff.c:783
METHODDEF boolean encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
Definition: jchuff.c:605
huff_entropy_encoder * huff_entropy_ptr
Definition: jchuff.c:74
const GLdouble * v
Definition: glext.h:2936
long * ac_count_ptrs[NUM_HUFF_TBLS]
Definition: jchuff.c:70
const int jpeg_natural_order[]
Definition: jutils.c:49
unsigned int ehufco[256]
Definition: jchuff.h:16
struct jpeg_common_struct * j_common_ptr
Definition: jpeglib.h:260
JOCTET * next_output_byte
Definition: jchuff.c:81
size_t free_in_buffer
Definition: jpeglib.h:702
case const int
Definition: Callbacks.cpp:52
savable_state saved
Definition: jchuff.c:58
#define NUM_HUFF_TBLS
Definition: jpeglib.h:45
#define LOCAL
Definition: jmorecfg.h:189
#define ASSIGN_STATE(dest, src)
Definition: jchuff.c:41
GLOBAL JHUFF_TBL * jpeg_alloc_huff_table(j_common_ptr cinfo)
Definition: jcomapi.c:86
#define ERREXIT(cinfo, code)
Definition: jerror.h:193
#define SIZEOF(object)
Definition: jinclude.h:80
JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]
Definition: jpeglib.h:305
long INT32
Definition: jmorecfg.h:154
struct jpeg_entropy_encoder * entropy
Definition: jpeglib.h:400
int i
Definition: process.py:33
#define JPOOL_IMAGE
Definition: jpeglib.h:736
list l
Definition: prepare.py:17
int MCU_membership[C_MAX_BLOCKS_IN_MCU]
Definition: jpeglib.h:383
METHODDEF void start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
Definition: jchuff.c:106
LOCAL boolean flush_bits(working_state *state)
Definition: jchuff.c:309
c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]
Definition: jchuff.c:66
#define JPEG_RST0
Definition: jpeglib.h:1000
int put_bits
Definition: jchuff.c:31
#define MEMCOPY(dest, src, size)
Definition: jinclude.h:68
INLINE LOCAL boolean emit_bits(working_state *state, unsigned int code, int size)
Definition: jchuff.c:271
const GLubyte * c
Definition: glext.h:4677
short UINT8
Definition: jmorecfg.h:140
#define DCTSIZE2
Definition: jpeglib.h:43
METHODDEF boolean encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
Definition: jchuff.c:437
#define NULL
Definition: Lib.h:88
LOCAL boolean encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl)
Definition: jchuff.c:322
struct jpeg_entropy_encoder pub
Definition: jchuff.c:56
struct jpeg_destination_mgr * dest
Definition: jpeglib.h:271
INT32 put_buffer
Definition: jchuff.c:30
Definition: eax4.h:1413
JBLOCK FAR * JBLOCKROW
Definition: jpeglib.h:84
GLOBAL void jinit_huff_encoder(j_compress_ptr cinfo)
Definition: jchuff.c:828
JCOEF FAR * JCOEFPTR
Definition: jpeglib.h:88
LOCAL boolean emit_restart(working_state *state, int restart_num)
Definition: jchuff.c:412
unsigned int restart_interval
Definition: jpeglib.h:331
METHODDEF void finish_pass_huff(j_compress_ptr cinfo)
Definition: jchuff.c:494
#define GLOBAL
Definition: jmorecfg.h:190
#define METHODDEF
Definition: jmorecfg.h:188
#define ERREXIT1(cinfo, code, p1)
Definition: jerror.h:196
UINT8 bits[17]
Definition: jpeglib.h:114
boolean sent_table
Definition: jpeglib.h:122
GLdouble GLdouble GLdouble r
Definition: glext.h:2951
#define bits
Definition: Unzip.cpp:3797
METHODDEF boolean encode_mcu_huff JPP((j_compress_ptr cinfo, JBLOCKROW *MCU_data))
size_t free_in_buffer
Definition: jchuff.c:82
GLsizeiptr size
Definition: glext.h:3112
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]
Definition: jpeglib.h:376
UINT8 huffval[256]
Definition: jpeglib.h:116
int last_dc_val[MAX_COMPS_IN_SCAN]
Definition: jchuff.c:32
#define FALSE
Definition: mprintf.c:70
unsigned int restarts_to_go
Definition: jchuff.c:61
LOCAL boolean dump_buffer(working_state *state)
Definition: jchuff.c:247
#define TRUE
Definition: mprintf.c:69
GLint j
Definition: qgl.h:264
char JOCTET
Definition: jmorecfg.h:115
if(!ValidDisplayID(prefInfo.prefDisplayID)) prefInfo.prefDisplayID
LOCAL void htest_one_block(JCOEFPTR block, int last_dc_val, long dc_counts[], long ac_counts[])
Definition: jchuff.c:540
c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]
Definition: jchuff.c:65
GLfloat GLfloat p
Definition: glext.h:4674
char ehufsi[256]
Definition: jchuff.h:17
savable_state cur
Definition: jchuff.c:83
JOCTET * next_output_byte
Definition: jpeglib.h:701
GLOBAL void jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
Definition: jchuff.c:642
GLOBAL void jpeg_make_c_derived_tbl(j_compress_ptr cinfo, JHUFF_TBL *htbl, c_derived_tbl **pdtbl)
Definition: jchuff.c:179
#define MAX_CLEN
#define MAX_COMPS_IN_SCAN
Definition: jpeglib.h:47
#define MEMZERO(target, size)
Definition: jinclude.h:67
long * dc_count_ptrs[NUM_HUFF_TBLS]
Definition: jchuff.c:69
#define emit_byte(state, val, action)
Definition: jchuff.c:239