doom3-gpl
Doom 3 GPL source release
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
jmemmgr.c
Go to the documentation of this file.
1 /*
2  * jmemmgr.c
3  *
4  * Copyright (C) 1991-1995, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the JPEG system-independent memory management
9  * routines. This code is usable across a wide variety of machines; most
10  * of the system dependencies have been isolated in a separate file.
11  * The major functions provided here are:
12  * * pool-based allocation and freeing of memory;
13  * * policy decisions about how to divide available memory among the
14  * virtual arrays;
15  * * control logic for swapping virtual arrays between main memory and
16  * backing storage.
17  * The separate system-dependent file provides the actual backing-storage
18  * access code, and it contains the policy decision about how much total
19  * main memory to use.
20  * This file is system-dependent in the sense that some of its functions
21  * are unnecessary in some systems. For example, if there is enough virtual
22  * memory so that backing storage will never be used, much of the virtual
23  * array control logic could be removed. (Of course, if you have that much
24  * memory then you shouldn't care about a little bit of unused code...)
25  */
26 
27 #define JPEG_INTERNALS
28 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
29 #include "jinclude.h"
30 #include "jpeglib.h"
31 #include "jmemsys.h" /* import the system-dependent declarations */
32 
33 #ifndef NO_GETENV
34 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
35 extern char * getenv JPP((const char * name));
36 #endif
37 #endif
38 
39 
40 /*
41  * Some important notes:
42  * The allocation routines provided here must never return NULL.
43  * They should exit to error_exit if unsuccessful.
44  *
45  * It's not a good idea to try to merge the sarray and barray routines,
46  * even though they are textually almost the same, because samples are
47  * usually stored as bytes while coefficients are shorts or ints. Thus,
48  * in machines where byte pointers have a different representation from
49  * word pointers, the resulting machine code could not be the same.
50  */
51 
52 
53 /*
54  * Many machines require storage alignment: longs must start on 4-byte
55  * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
56  * always returns pointers that are multiples of the worst-case alignment
57  * requirement, and we had better do so too.
58  * There isn't any really portable way to determine the worst-case alignment
59  * requirement. This module assumes that the alignment requirement is
60  * multiples of sizeof(ALIGN_TYPE).
61  * By default, we define ALIGN_TYPE as double. This is necessary on some
62  * workstations (where doubles really do need 8-byte alignment) and will work
63  * fine on nearly everything. If your machine has lesser alignment needs,
64  * you can save a few bytes by making ALIGN_TYPE smaller.
65  * The only place I know of where this will NOT work is certain Macintosh
66  * 680x0 compilers that define double as a 10-byte IEEE extended float.
67  * Doing 10-byte alignment is counterproductive because longwords won't be
68  * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
69  * such a compiler.
70  */
71 
72 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
73 #define ALIGN_TYPE double
74 #endif
75 
76 
77 /*
78  * We allocate objects from "pools", where each pool is gotten with a single
79  * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
80  * overhead within a pool, except for alignment padding. Each pool has a
81  * header with a link to the next pool of the same class.
82  * Small and large pool headers are identical except that the latter's
83  * link pointer must be FAR on 80x86 machines.
84  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
85  * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
86  * of the alignment requirement of ALIGN_TYPE.
87  */
88 
90 
91 typedef union small_pool_struct {
92  struct {
93  small_pool_ptr next; /* next in list of pools */
94  size_t bytes_used; /* how many bytes already used within pool */
95  size_t bytes_left; /* bytes still available in this pool */
96  } hdr;
97  ALIGN_TYPE dummy; /* included in union to ensure alignment */
99 
101 
102 typedef union large_pool_struct {
103  struct {
104  large_pool_ptr next; /* next in list of pools */
105  size_t bytes_used; /* how many bytes already used within pool */
106  size_t bytes_left; /* bytes still available in this pool */
107  } hdr;
108  ALIGN_TYPE dummy; /* included in union to ensure alignment */
110 
111 
112 /*
113  * Here is the full definition of a memory manager object.
114  */
115 
116 typedef struct {
117  struct jpeg_memory_mgr pub; /* public fields */
118 
119  /* Each pool identifier (lifetime class) names a linked list of pools. */
120  small_pool_ptr small_list[JPOOL_NUMPOOLS];
121  large_pool_ptr large_list[JPOOL_NUMPOOLS];
122 
123  /* Since we only have one lifetime class of virtual arrays, only one
124  * linked list is necessary (for each datatype). Note that the virtual
125  * array control blocks being linked together are actually stored somewhere
126  * in the small-pool list.
127  */
130 
131  /* This counts total space obtained from jpeg_get_small/large */
133 
134  /* alloc_sarray and alloc_barray set this value for use by virtual
135  * array routines.
136  */
137  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
138 } my_memory_mgr;
139 
141 
142 
143 /*
144  * The control blocks for virtual arrays.
145  * Note that these blocks are allocated in the "small" pool area.
146  * System-dependent info for the associated backing store (if any) is hidden
147  * inside the backing_store_info struct.
148  */
149 
151  JSAMPARRAY mem_buffer; /* => the in-memory buffer */
152  JDIMENSION rows_in_array; /* total virtual array height */
153  JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
154  JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
155  JDIMENSION rows_in_mem; /* height of memory buffer */
156  JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
157  JDIMENSION cur_start_row; /* first logical row # in the buffer */
158  JDIMENSION first_undef_row; /* row # of first uninitialized row */
159  boolean pre_zero; /* pre-zero mode requested? */
160  boolean dirty; /* do current buffer contents need written? */
161  boolean b_s_open; /* is backing-store data valid? */
162  jvirt_sarray_ptr next; /* link to next virtual sarray control block */
163  backing_store_info b_s_info; /* System-dependent control info */
164 };
165 
167  JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
168  JDIMENSION rows_in_array; /* total virtual array height */
169  JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
170  JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
171  JDIMENSION rows_in_mem; /* height of memory buffer */
172  JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
173  JDIMENSION cur_start_row; /* first logical row # in the buffer */
174  JDIMENSION first_undef_row; /* row # of first uninitialized row */
175  boolean pre_zero; /* pre-zero mode requested? */
176  boolean dirty; /* do current buffer contents need written? */
177  boolean b_s_open; /* is backing-store data valid? */
178  jvirt_barray_ptr next; /* link to next virtual barray control block */
179  backing_store_info b_s_info; /* System-dependent control info */
180 };
181 
182 
183 #ifdef MEM_STATS /* optional extra stuff for statistics */
184 
185 LOCAL void
186 print_mem_stats (j_common_ptr cinfo, int pool_id)
187 {
188  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
189  small_pool_ptr shdr_ptr;
190  large_pool_ptr lhdr_ptr;
191 
192  /* Since this is only a debugging stub, we can cheat a little by using
193  * fprintf directly rather than going through the trace message code.
194  * This is helpful because message parm array can't handle longs.
195  */
196  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
197  pool_id, mem->total_space_allocated);
198 
199  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
200  lhdr_ptr = lhdr_ptr->hdr.next) {
201  fprintf(stderr, " Large chunk used %ld\n",
202  (long) lhdr_ptr->hdr.bytes_used);
203  }
204 
205  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
206  shdr_ptr = shdr_ptr->hdr.next) {
207  fprintf(stderr, " Small chunk used %ld free %ld\n",
208  (long) shdr_ptr->hdr.bytes_used,
209  (long) shdr_ptr->hdr.bytes_left);
210  }
211 }
212 
213 #endif /* MEM_STATS */
214 
215 
216 LOCAL void
217 out_of_memory (j_common_ptr cinfo, int which)
218 /* Report an out-of-memory error and stop execution */
219 /* If we compiled MEM_STATS support, report alloc requests before dying */
220 {
221 #ifdef MEM_STATS
222  cinfo->err->trace_level = 2; /* force self_destruct to report stats */
223 #endif
224  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
225 }
226 
227 
228 /*
229  * Allocation of "small" objects.
230  *
231  * For these, we use pooled storage. When a new pool must be created,
232  * we try to get enough space for the current request plus a "slop" factor,
233  * where the slop will be the amount of leftover space in the new pool.
234  * The speed vs. space tradeoff is largely determined by the slop values.
235  * A different slop value is provided for each pool class (lifetime),
236  * and we also distinguish the first pool of a class from later ones.
237  * NOTE: the values given work fairly well on both 16- and 32-bit-int
238  * machines, but may be too small if longs are 64 bits or more.
239  */
240 
241 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
242 {
243  1600, /* first PERMANENT pool */
244  16000 /* first IMAGE pool */
245 };
246 
247 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
248 {
249  0, /* additional PERMANENT pools */
250  5000 /* additional IMAGE pools */
251 };
252 
253 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
254 
255 
256 METHODDEF void *
257 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
258 /* Allocate a "small" object */
259 {
260  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
261  small_pool_ptr hdr_ptr, prev_hdr_ptr;
262  char * data_ptr;
263  size_t odd_bytes, min_request, slop;
264 
265  /* Check for unsatisfiable request (do now to ensure no overflow below) */
266  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
267  out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
268 
269  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
270  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
271  if (odd_bytes > 0)
272  sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
273 
274  /* See if space is available in any existing pool */
275  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
276  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
277  prev_hdr_ptr = NULL;
278  hdr_ptr = mem->small_list[pool_id];
279  while (hdr_ptr != NULL) {
280  if (hdr_ptr->hdr.bytes_left >= sizeofobject)
281  break; /* found pool with enough space */
282  prev_hdr_ptr = hdr_ptr;
283  hdr_ptr = hdr_ptr->hdr.next;
284  }
285 
286  /* Time to make a new pool? */
287  if (hdr_ptr == NULL) {
288  /* min_request is what we need now, slop is what will be leftover */
289  min_request = sizeofobject + SIZEOF(small_pool_hdr);
290  if (prev_hdr_ptr == NULL) /* first pool in class? */
291  slop = first_pool_slop[pool_id];
292  else
293  slop = extra_pool_slop[pool_id];
294  /* Don't ask for more than MAX_ALLOC_CHUNK */
295  if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
296  slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
297  /* Try to get space, if fail reduce slop and try again */
298  for (;;) {
299  hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
300  if (hdr_ptr != NULL)
301  break;
302  slop /= 2;
303  if (slop < MIN_SLOP) /* give up when it gets real small */
304  out_of_memory(cinfo, 2); /* jpeg_get_small failed */
305  }
306  mem->total_space_allocated += min_request + slop;
307  /* Success, initialize the new pool header and add to end of list */
308  hdr_ptr->hdr.next = NULL;
309  hdr_ptr->hdr.bytes_used = 0;
310  hdr_ptr->hdr.bytes_left = sizeofobject + slop;
311  if (prev_hdr_ptr == NULL) /* first pool in class? */
312  mem->small_list[pool_id] = hdr_ptr;
313  else
314  prev_hdr_ptr->hdr.next = hdr_ptr;
315  }
316 
317  /* OK, allocate the object from the current pool */
318  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
319  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
320  hdr_ptr->hdr.bytes_used += sizeofobject;
321  hdr_ptr->hdr.bytes_left -= sizeofobject;
322 
323  return (void *) data_ptr;
324 }
325 
326 
327 /*
328  * Allocation of "large" objects.
329  *
330  * The external semantics of these are the same as "small" objects,
331  * except that FAR pointers are used on 80x86. However the pool
332  * management heuristics are quite different. We assume that each
333  * request is large enough that it may as well be passed directly to
334  * jpeg_get_large; the pool management just links everything together
335  * so that we can free it all on demand.
336  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
337  * structures. The routines that create these structures (see below)
338  * deliberately bunch rows together to ensure a large request size.
339  */
340 
341 METHODDEF void FAR *
342 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
343 /* Allocate a "large" object */
344 {
345  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
346  large_pool_ptr hdr_ptr;
347  size_t odd_bytes;
348 
349  /* Check for unsatisfiable request (do now to ensure no overflow below) */
350  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
351  out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
352 
353  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
354  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
355  if (odd_bytes > 0)
356  sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
357 
358  /* Always make a new pool */
359  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
360  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
361 
362  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
364  if (hdr_ptr == NULL)
365  out_of_memory(cinfo, 4); /* jpeg_get_large failed */
366  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
367 
368  /* Success, initialize the new pool header and add to list */
369  hdr_ptr->hdr.next = mem->large_list[pool_id];
370  /* We maintain space counts in each pool header for statistical purposes,
371  * even though they are not needed for allocation.
372  */
373  hdr_ptr->hdr.bytes_used = sizeofobject;
374  hdr_ptr->hdr.bytes_left = 0;
375  mem->large_list[pool_id] = hdr_ptr;
376 
377  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
378 }
379 
380 
381 /*
382  * Creation of 2-D sample arrays.
383  * The pointers are in near heap, the samples themselves in FAR heap.
384  *
385  * To minimize allocation overhead and to allow I/O of large contiguous
386  * blocks, we allocate the sample rows in groups of as many rows as possible
387  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
388  * NB: the virtual array control routines, later in this file, know about
389  * this chunking of rows. The rowsperchunk value is left in the mem manager
390  * object so that it can be saved away if this sarray is the workspace for
391  * a virtual array.
392  */
393 
395 alloc_sarray (j_common_ptr cinfo, int pool_id,
396  JDIMENSION samplesperrow, JDIMENSION numrows)
397 /* Allocate a 2-D sample array */
398 {
399  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
401  JSAMPROW workspace;
402  JDIMENSION rowsperchunk, currow, i;
403  long ltemp;
404 
405  /* Calculate max # of rows allowed in one allocation chunk */
407  ((long) samplesperrow * SIZEOF(JSAMPLE));
408  if (ltemp <= 0)
409  ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
410  if (ltemp < (long) numrows)
411  rowsperchunk = (JDIMENSION) ltemp;
412  else
413  rowsperchunk = numrows;
414  mem->last_rowsperchunk = rowsperchunk;
415 
416  /* Get space for row pointers (small object) */
417  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
418  (size_t) (numrows * SIZEOF(JSAMPROW)));
419 
420  /* Get the rows themselves (large objects) */
421  currow = 0;
422  while (currow < numrows) {
423  rowsperchunk = MIN(rowsperchunk, numrows - currow);
424  workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
425  (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
426  * SIZEOF(JSAMPLE)));
427  for (i = rowsperchunk; i > 0; i--) {
428  result[currow++] = workspace;
429  workspace += samplesperrow;
430  }
431  }
432 
433  return result;
434 }
435 
436 
437 /*
438  * Creation of 2-D coefficient-block arrays.
439  * This is essentially the same as the code for sample arrays, above.
440  */
441 
443 alloc_barray (j_common_ptr cinfo, int pool_id,
444  JDIMENSION blocksperrow, JDIMENSION numrows)
445 /* Allocate a 2-D coefficient-block array */
446 {
447  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
449  JBLOCKROW workspace;
450  JDIMENSION rowsperchunk, currow, i;
451  long ltemp;
452 
453  /* Calculate max # of rows allowed in one allocation chunk */
455  ((long) blocksperrow * SIZEOF(JBLOCK));
456  if (ltemp <= 0)
457  ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458  if (ltemp < (long) numrows)
459  rowsperchunk = (JDIMENSION) ltemp;
460  else
461  rowsperchunk = numrows;
462  mem->last_rowsperchunk = rowsperchunk;
463 
464  /* Get space for row pointers (small object) */
465  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
466  (size_t) (numrows * SIZEOF(JBLOCKROW)));
467 
468  /* Get the rows themselves (large objects) */
469  currow = 0;
470  while (currow < numrows) {
471  rowsperchunk = MIN(rowsperchunk, numrows - currow);
472  workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
473  (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
474  * SIZEOF(JBLOCK)));
475  for (i = rowsperchunk; i > 0; i--) {
476  result[currow++] = workspace;
477  workspace += blocksperrow;
478  }
479  }
480 
481  return result;
482 }
483 
484 
485 /*
486  * About virtual array management:
487  *
488  * The above "normal" array routines are only used to allocate strip buffers
489  * (as wide as the image, but just a few rows high). Full-image-sized buffers
490  * are handled as "virtual" arrays. The array is still accessed a strip at a
491  * time, but the memory manager must save the whole array for repeated
492  * accesses. The intended implementation is that there is a strip buffer in
493  * memory (as high as is possible given the desired memory limit), plus a
494  * backing file that holds the rest of the array.
495  *
496  * The request_virt_array routines are told the total size of the image and
497  * the maximum number of rows that will be accessed at once. The in-memory
498  * buffer must be at least as large as the maxaccess value.
499  *
500  * The request routines create control blocks but not the in-memory buffers.
501  * That is postponed until realize_virt_arrays is called. At that time the
502  * total amount of space needed is known (approximately, anyway), so free
503  * memory can be divided up fairly.
504  *
505  * The access_virt_array routines are responsible for making a specific strip
506  * area accessible (after reading or writing the backing file, if necessary).
507  * Note that the access routines are told whether the caller intends to modify
508  * the accessed strip; during a read-only pass this saves having to rewrite
509  * data to disk. The access routines are also responsible for pre-zeroing
510  * any newly accessed rows, if pre-zeroing was requested.
511  *
512  * In current usage, the access requests are usually for nonoverlapping
513  * strips; that is, successive access start_row numbers differ by exactly
514  * num_rows = maxaccess. This means we can get good performance with simple
515  * buffer dump/reload logic, by making the in-memory buffer be a multiple
516  * of the access height; then there will never be accesses across bufferload
517  * boundaries. The code will still work with overlapping access requests,
518  * but it doesn't handle bufferload overlaps very efficiently.
519  */
520 
521 
523 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
524  JDIMENSION samplesperrow, JDIMENSION numrows,
525  JDIMENSION maxaccess)
526 /* Request a virtual 2-D sample array */
527 {
528  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
530 
531  /* Only IMAGE-lifetime virtual arrays are currently supported */
532  if (pool_id != JPOOL_IMAGE)
533  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
534 
535  /* get control block */
536  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
537  SIZEOF(struct jvirt_sarray_control));
538 
539  result->mem_buffer = NULL; /* marks array not yet realized */
540  result->rows_in_array = numrows;
541  result->samplesperrow = samplesperrow;
542  result->maxaccess = maxaccess;
543  result->pre_zero = pre_zero;
544  result->b_s_open = FALSE; /* no associated backing-store object */
545  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
546  mem->virt_sarray_list = result;
547 
548  return result;
549 }
550 
551 
553 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
554  JDIMENSION blocksperrow, JDIMENSION numrows,
555  JDIMENSION maxaccess)
556 /* Request a virtual 2-D coefficient-block array */
557 {
558  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
560 
561  /* Only IMAGE-lifetime virtual arrays are currently supported */
562  if (pool_id != JPOOL_IMAGE)
563  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
564 
565  /* get control block */
566  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
567  SIZEOF(struct jvirt_barray_control));
568 
569  result->mem_buffer = NULL; /* marks array not yet realized */
570  result->rows_in_array = numrows;
571  result->blocksperrow = blocksperrow;
572  result->maxaccess = maxaccess;
573  result->pre_zero = pre_zero;
574  result->b_s_open = FALSE; /* no associated backing-store object */
575  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
576  mem->virt_barray_list = result;
577 
578  return result;
579 }
580 
581 
582 METHODDEF void
584 /* Allocate the in-memory buffers for any unrealized virtual arrays */
585 {
586  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
587  long space_per_minheight, maximum_space, avail_mem;
588  long minheights, max_minheights;
589  jvirt_sarray_ptr sptr;
590  jvirt_barray_ptr bptr;
591 
592  /* Compute the minimum space needed (maxaccess rows in each buffer)
593  * and the maximum space needed (full image height in each buffer).
594  * These may be of use to the system-dependent jpeg_mem_available routine.
595  */
596  space_per_minheight = 0;
597  maximum_space = 0;
598  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
599  if (sptr->mem_buffer == NULL) { /* if not realized yet */
600  space_per_minheight += (long) sptr->maxaccess *
601  (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
602  maximum_space += (long) sptr->rows_in_array *
603  (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
604  }
605  }
606  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
607  if (bptr->mem_buffer == NULL) { /* if not realized yet */
608  space_per_minheight += (long) bptr->maxaccess *
609  (long) bptr->blocksperrow * SIZEOF(JBLOCK);
610  maximum_space += (long) bptr->rows_in_array *
611  (long) bptr->blocksperrow * SIZEOF(JBLOCK);
612  }
613  }
614 
615  if (space_per_minheight <= 0)
616  return; /* no unrealized arrays, no work */
617 
618  /* Determine amount of memory to actually use; this is system-dependent. */
619  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
620  mem->total_space_allocated);
621 
622  /* If the maximum space needed is available, make all the buffers full
623  * height; otherwise parcel it out with the same number of minheights
624  * in each buffer.
625  */
626  if (avail_mem >= maximum_space)
627  max_minheights = 1000000000L;
628  else {
629  max_minheights = avail_mem / space_per_minheight;
630  /* If there doesn't seem to be enough space, try to get the minimum
631  * anyway. This allows a "stub" implementation of jpeg_mem_available().
632  */
633  if (max_minheights <= 0)
634  max_minheights = 1;
635  }
636 
637  /* Allocate the in-memory buffers and initialize backing store as needed. */
638 
639  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
640  if (sptr->mem_buffer == NULL) { /* if not realized yet */
641  minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
642  if (minheights <= max_minheights) {
643  /* This buffer fits in memory */
644  sptr->rows_in_mem = sptr->rows_in_array;
645  } else {
646  /* It doesn't fit in memory, create backing store. */
647  sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
648  jpeg_open_backing_store(cinfo, & sptr->b_s_info,
649  (long) sptr->rows_in_array *
650  (long) sptr->samplesperrow *
651  (long) SIZEOF(JSAMPLE));
652  sptr->b_s_open = TRUE;
653  }
654  sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
655  sptr->samplesperrow, sptr->rows_in_mem);
656  sptr->rowsperchunk = mem->last_rowsperchunk;
657  sptr->cur_start_row = 0;
658  sptr->first_undef_row = 0;
659  sptr->dirty = FALSE;
660  }
661  }
662 
663  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
664  if (bptr->mem_buffer == NULL) { /* if not realized yet */
665  minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
666  if (minheights <= max_minheights) {
667  /* This buffer fits in memory */
668  bptr->rows_in_mem = bptr->rows_in_array;
669  } else {
670  /* It doesn't fit in memory, create backing store. */
671  bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
672  jpeg_open_backing_store(cinfo, & bptr->b_s_info,
673  (long) bptr->rows_in_array *
674  (long) bptr->blocksperrow *
675  (long) SIZEOF(JBLOCK));
676  bptr->b_s_open = TRUE;
677  }
678  bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
679  bptr->blocksperrow, bptr->rows_in_mem);
680  bptr->rowsperchunk = mem->last_rowsperchunk;
681  bptr->cur_start_row = 0;
682  bptr->first_undef_row = 0;
683  bptr->dirty = FALSE;
684  }
685  }
686 }
687 
688 
689 LOCAL void
690 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
691 /* Do backing store read or write of a virtual sample array */
692 {
693  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
694 
695  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
696  file_offset = ptr->cur_start_row * bytesperrow;
697  /* Loop to read or write each allocation chunk in mem_buffer */
698  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
699  /* One chunk, but check for short chunk at end of buffer */
700  rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
701  /* Transfer no more than is currently defined */
702  thisrow = (long) ptr->cur_start_row + i;
703  rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
704  /* Transfer no more than fits in file */
705  rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
706  if (rows <= 0) /* this chunk might be past end of file! */
707  break;
708  byte_count = rows * bytesperrow;
709  if (writing)
710  (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
711  (void FAR *) ptr->mem_buffer[i],
712  file_offset, byte_count);
713  else
714  (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
715  (void FAR *) ptr->mem_buffer[i],
716  file_offset, byte_count);
717  file_offset += byte_count;
718  }
719 }
720 
721 
722 LOCAL void
723 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
724 /* Do backing store read or write of a virtual coefficient-block array */
725 {
726  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
727 
728  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
729  file_offset = ptr->cur_start_row * bytesperrow;
730  /* Loop to read or write each allocation chunk in mem_buffer */
731  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
732  /* One chunk, but check for short chunk at end of buffer */
733  rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
734  /* Transfer no more than is currently defined */
735  thisrow = (long) ptr->cur_start_row + i;
736  rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
737  /* Transfer no more than fits in file */
738  rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
739  if (rows <= 0) /* this chunk might be past end of file! */
740  break;
741  byte_count = rows * bytesperrow;
742  if (writing)
743  (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
744  (void FAR *) ptr->mem_buffer[i],
745  file_offset, byte_count);
746  else
747  (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
748  (void FAR *) ptr->mem_buffer[i],
749  file_offset, byte_count);
750  file_offset += byte_count;
751  }
752 }
753 
754 
757  JDIMENSION start_row, JDIMENSION num_rows,
758  boolean writable)
759 /* Access the part of a virtual sample array starting at start_row */
760 /* and extending for num_rows rows. writable is true if */
761 /* caller intends to modify the accessed area. */
762 {
763  JDIMENSION end_row = start_row + num_rows;
764  JDIMENSION undef_row;
765 
766  /* debugging check */
767  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
768  ptr->mem_buffer == NULL)
769  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
770 
771  /* Make the desired part of the virtual array accessible */
772  if (start_row < ptr->cur_start_row ||
773  end_row > ptr->cur_start_row+ptr->rows_in_mem) {
774  if (! ptr->b_s_open)
775  ERREXIT(cinfo, JERR_VIRTUAL_BUG);
776  /* Flush old buffer contents if necessary */
777  if (ptr->dirty) {
778  do_sarray_io(cinfo, ptr, TRUE);
779  ptr->dirty = FALSE;
780  }
781  /* Decide what part of virtual array to access.
782  * Algorithm: if target address > current window, assume forward scan,
783  * load starting at target address. If target address < current window,
784  * assume backward scan, load so that target area is top of window.
785  * Note that when switching from forward write to forward read, will have
786  * start_row = 0, so the limiting case applies and we load from 0 anyway.
787  */
788  if (start_row > ptr->cur_start_row) {
789  ptr->cur_start_row = start_row;
790  } else {
791  /* use long arithmetic here to avoid overflow & unsigned problems */
792  long ltemp;
793 
794  ltemp = (long) end_row - (long) ptr->rows_in_mem;
795  if (ltemp < 0)
796  ltemp = 0; /* don't fall off front end of file */
797  ptr->cur_start_row = (JDIMENSION) ltemp;
798  }
799  /* Read in the selected part of the array.
800  * During the initial write pass, we will do no actual read
801  * because the selected part is all undefined.
802  */
803  do_sarray_io(cinfo, ptr, FALSE);
804  }
805  /* Ensure the accessed part of the array is defined; prezero if needed.
806  * To improve locality of access, we only prezero the part of the array
807  * that the caller is about to access, not the entire in-memory array.
808  */
809  if (ptr->first_undef_row < end_row) {
810  if (ptr->first_undef_row < start_row) {
811  if (writable) /* writer skipped over a section of array */
812  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
813  undef_row = start_row; /* but reader is allowed to read ahead */
814  } else {
815  undef_row = ptr->first_undef_row;
816  }
817  if (writable)
818  ptr->first_undef_row = end_row;
819  if (ptr->pre_zero) {
820  size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
821  undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
822  end_row -= ptr->cur_start_row;
823  while (undef_row < end_row) {
824  jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
825  undef_row++;
826  }
827  } else {
828  if (! writable) /* reader looking at undefined data */
829  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
830  }
831  }
832  /* Flag the buffer dirty if caller will write in it */
833  if (writable)
834  ptr->dirty = TRUE;
835  /* Return address of proper part of the buffer */
836  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
837 }
838 
839 
842  JDIMENSION start_row, JDIMENSION num_rows,
843  boolean writable)
844 /* Access the part of a virtual block array starting at start_row */
845 /* and extending for num_rows rows. writable is true if */
846 /* caller intends to modify the accessed area. */
847 {
848  JDIMENSION end_row = start_row + num_rows;
849  JDIMENSION undef_row;
850 
851  /* debugging check */
852  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
853  ptr->mem_buffer == NULL)
854  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
855 
856  /* Make the desired part of the virtual array accessible */
857  if (start_row < ptr->cur_start_row ||
858  end_row > ptr->cur_start_row+ptr->rows_in_mem) {
859  if (! ptr->b_s_open)
860  ERREXIT(cinfo, JERR_VIRTUAL_BUG);
861  /* Flush old buffer contents if necessary */
862  if (ptr->dirty) {
863  do_barray_io(cinfo, ptr, TRUE);
864  ptr->dirty = FALSE;
865  }
866  /* Decide what part of virtual array to access.
867  * Algorithm: if target address > current window, assume forward scan,
868  * load starting at target address. If target address < current window,
869  * assume backward scan, load so that target area is top of window.
870  * Note that when switching from forward write to forward read, will have
871  * start_row = 0, so the limiting case applies and we load from 0 anyway.
872  */
873  if (start_row > ptr->cur_start_row) {
874  ptr->cur_start_row = start_row;
875  } else {
876  /* use long arithmetic here to avoid overflow & unsigned problems */
877  long ltemp;
878 
879  ltemp = (long) end_row - (long) ptr->rows_in_mem;
880  if (ltemp < 0)
881  ltemp = 0; /* don't fall off front end of file */
882  ptr->cur_start_row = (JDIMENSION) ltemp;
883  }
884  /* Read in the selected part of the array.
885  * During the initial write pass, we will do no actual read
886  * because the selected part is all undefined.
887  */
888  do_barray_io(cinfo, ptr, FALSE);
889  }
890  /* Ensure the accessed part of the array is defined; prezero if needed.
891  * To improve locality of access, we only prezero the part of the array
892  * that the caller is about to access, not the entire in-memory array.
893  */
894  if (ptr->first_undef_row < end_row) {
895  if (ptr->first_undef_row < start_row) {
896  if (writable) /* writer skipped over a section of array */
897  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
898  undef_row = start_row; /* but reader is allowed to read ahead */
899  } else {
900  undef_row = ptr->first_undef_row;
901  }
902  if (writable)
903  ptr->first_undef_row = end_row;
904  if (ptr->pre_zero) {
905  size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
906  undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
907  end_row -= ptr->cur_start_row;
908  while (undef_row < end_row) {
909  jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
910  undef_row++;
911  }
912  } else {
913  if (! writable) /* reader looking at undefined data */
914  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
915  }
916  }
917  /* Flag the buffer dirty if caller will write in it */
918  if (writable)
919  ptr->dirty = TRUE;
920  /* Return address of proper part of the buffer */
921  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
922 }
923 
924 
925 /*
926  * Release all objects belonging to a specified pool.
927  */
928 
929 METHODDEF void
930 free_pool (j_common_ptr cinfo, int pool_id)
931 {
932  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
933  small_pool_ptr shdr_ptr;
934  large_pool_ptr lhdr_ptr;
935  size_t space_freed;
936 
937  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
938  ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
939 
940 #ifdef MEM_STATS
941  if (cinfo->err->trace_level > 1)
942  print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
943 #endif
944 
945  /* If freeing IMAGE pool, close any virtual arrays first */
946  if (pool_id == JPOOL_IMAGE) {
947  jvirt_sarray_ptr sptr;
948  jvirt_barray_ptr bptr;
949 
950  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
951  if (sptr->b_s_open) { /* there may be no backing store */
952  sptr->b_s_open = FALSE; /* prevent recursive close if error */
953  (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
954  }
955  }
956  mem->virt_sarray_list = NULL;
957  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
958  if (bptr->b_s_open) { /* there may be no backing store */
959  bptr->b_s_open = FALSE; /* prevent recursive close if error */
960  (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
961  }
962  }
963  mem->virt_barray_list = NULL;
964  }
965 
966  /* Release large objects */
967  lhdr_ptr = mem->large_list[pool_id];
968  mem->large_list[pool_id] = NULL;
969 
970  while (lhdr_ptr != NULL) {
971  large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
972  space_freed = lhdr_ptr->hdr.bytes_used +
973  lhdr_ptr->hdr.bytes_left +
975  jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
976  mem->total_space_allocated -= space_freed;
977  lhdr_ptr = next_lhdr_ptr;
978  }
979 
980  /* Release small objects */
981  shdr_ptr = mem->small_list[pool_id];
982  mem->small_list[pool_id] = NULL;
983 
984  while (shdr_ptr != NULL) {
985  small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
986  space_freed = shdr_ptr->hdr.bytes_used +
987  shdr_ptr->hdr.bytes_left +
989  jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
990  mem->total_space_allocated -= space_freed;
991  shdr_ptr = next_shdr_ptr;
992  }
993 }
994 
995 
996 /*
997  * Close up shop entirely.
998  * Note that this cannot be called unless cinfo->mem is non-NULL.
999  */
1000 
1001 METHODDEF void
1003 {
1004  int pool;
1005 
1006  /* Close all backing store, release all memory.
1007  * Releasing pools in reverse order might help avoid fragmentation
1008  * with some (brain-damaged) malloc libraries.
1009  */
1010  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1011  free_pool(cinfo, pool);
1012  }
1013 
1014  /* Release the memory manager control block too. */
1015  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1016  cinfo->mem = NULL; /* ensures I will be called only once */
1017 
1018  jpeg_mem_term(cinfo); /* system-dependent cleanup */
1019 }
1020 
1021 
1022 /*
1023  * Memory manager initialization.
1024  * When this is called, only the error manager pointer is valid in cinfo!
1025  */
1026 
1027 GLOBAL void
1029 {
1030  my_mem_ptr mem;
1031  long max_to_use;
1032  int pool;
1033  size_t test_mac;
1034 
1035  cinfo->mem = NULL; /* for safety if init fails */
1036 
1037  /* Check for configuration errors.
1038  * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1039  * doesn't reflect any real hardware alignment requirement.
1040  * The test is a little tricky: for X>0, X and X-1 have no one-bits
1041  * in common if and only if X is a power of 2, ie has only one one-bit.
1042  * Some compilers may give an "unreachable code" warning here; ignore it.
1043  */
1044  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1045  ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1046  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1047  * a multiple of SIZEOF(ALIGN_TYPE).
1048  * Again, an "unreachable code" warning may be ignored here.
1049  * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1050  */
1051  test_mac = (size_t) MAX_ALLOC_CHUNK;
1052  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1053  (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1054  ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1055 
1056  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1057 
1058  /* Attempt to allocate memory manager's control block */
1059  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1060 
1061  if (mem == NULL) {
1062  jpeg_mem_term(cinfo); /* system-dependent cleanup */
1063  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1064  }
1065 
1066  /* OK, fill in the method pointers */
1067  mem->pub.alloc_small = alloc_small;
1068  mem->pub.alloc_large = alloc_large;
1069  mem->pub.alloc_sarray = alloc_sarray;
1070  mem->pub.alloc_barray = alloc_barray;
1071  mem->pub.request_virt_sarray = request_virt_sarray;
1072  mem->pub.request_virt_barray = request_virt_barray;
1073  mem->pub.realize_virt_arrays = realize_virt_arrays;
1074  mem->pub.access_virt_sarray = access_virt_sarray;
1075  mem->pub.access_virt_barray = access_virt_barray;
1076  mem->pub.free_pool = free_pool;
1077  mem->pub.self_destruct = self_destruct;
1078 
1079  /* Initialize working state */
1080  mem->pub.max_memory_to_use = max_to_use;
1081 
1082  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1083  mem->small_list[pool] = NULL;
1084  mem->large_list[pool] = NULL;
1085  }
1086  mem->virt_sarray_list = NULL;
1087  mem->virt_barray_list = NULL;
1088 
1090 
1091  /* Declare ourselves open for business */
1092  cinfo->mem = & mem->pub;
1093 
1094  /* Check for an environment variable JPEGMEM; if found, override the
1095  * default max_memory setting from jpeg_mem_init. Note that the
1096  * surrounding application may again override this value.
1097  * If your system doesn't support getenv(), define NO_GETENV to disable
1098  * this feature.
1099  */
1100 #ifndef NO_GETENV
1101  { char * memenv;
1102 
1103  if ((memenv = getenv("JPEGMEM")) != NULL) {
1104  char ch = 'x';
1105 
1106  if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1107  if (ch == 'm' || ch == 'M')
1108  max_to_use *= 1000L;
1109  mem->pub.max_memory_to_use = max_to_use * 1000L;
1110  }
1111  }
1112  }
1113 #endif
1114 
1115 }
size_t bytes_used
Definition: jmemmgr.c:94
ALIGN_TYPE dummy
Definition: jmemmgr.c:108
METHODDEF void FAR * alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
Definition: jmemmgr.c:342
char JSAMPLE
Definition: jmorecfg.h:64
JSAMPLE FAR * JSAMPROW
Definition: jpeglib.h:79
GLOBAL void jpeg_mem_term(j_common_ptr cinfo)
Definition: jmemansi.c:164
JDIMENSION maxaccess
Definition: jmemmgr.c:154
struct large_pool_struct::@89 hdr
GLOBAL void jpeg_free_large(j_common_ptr cinfo, void FAR *object, size_t sizeofobject)
Definition: jmemansi.c:62
JDIMENSION cur_start_row
Definition: jmemmgr.c:157
JCOEF JBLOCK[DCTSIZE2]
Definition: jpeglib.h:83
GLOBAL long jpeg_mem_init(j_common_ptr cinfo)
Definition: jmemansi.c:158
JBLOCKROW * JBLOCKARRAY
Definition: jpeglib.h:85
METHODDEF void self_destruct(j_common_ptr cinfo)
Definition: jmemmgr.c:1002
JDIMENSION rows_in_array
Definition: jmemmgr.c:168
#define LOCAL
Definition: jmorecfg.h:189
struct jpeg_memory_mgr pub
Definition: jmemmgr.c:117
long max_memory_to_use
Definition: jpeglib.h:786
#define ERREXIT(cinfo, code)
Definition: jerror.h:193
jvirt_sarray_ptr virt_sarray_list
Definition: jmemmgr.c:128
my_memory_mgr * my_mem_ptr
Definition: jmemmgr.c:140
jvirt_sarray_ptr next
Definition: jmemmgr.c:162
#define SIZEOF(object)
Definition: jinclude.h:80
JBLOCKARRAY mem_buffer
Definition: jmemmgr.c:167
#define ALIGN_TYPE
Definition: jmemmgr.c:73
JDIMENSION first_undef_row
Definition: jmemmgr.c:158
int i
Definition: process.py:33
Boolean result
JDIMENSION rowsperchunk
Definition: jmemmgr.c:156
union large_pool_struct large_pool_hdr
GLOBAL void jinit_memory_mgr(j_common_ptr cinfo)
Definition: jmemmgr.c:1028
#define JPOOL_IMAGE
Definition: jpeglib.h:736
union large_pool_struct FAR * large_pool_ptr
Definition: jmemmgr.c:100
size_t bytes_left
Definition: jmemmgr.c:95
large_pool_ptr next
Definition: jmemmgr.c:104
METHODDEF JBLOCKARRAY access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
Definition: jmemmgr.c:841
JSAMPARRAY mem_buffer
Definition: jmemmgr.c:151
JDIMENSION blocksperrow
Definition: jmemmgr.c:169
JDIMENSION rows_in_array
Definition: jmemmgr.c:152
LOCAL void do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
Definition: jmemmgr.c:723
long total_space_allocated
Definition: jmemmgr.c:132
GLOBAL void jpeg_free_small(j_common_ptr cinfo, void *object, size_t sizeofobject)
Definition: jmemansi.c:42
JDIMENSION rows_in_mem
Definition: jmemmgr.c:155
JDIMENSION maxaccess
Definition: jmemmgr.c:170
union small_pool_struct * small_pool_ptr
Definition: jmemmgr.c:89
ALIGN_TYPE dummy
Definition: jmemmgr.c:97
JDIMENSION last_rowsperchunk
Definition: jmemmgr.c:137
jvirt_barray_ptr next
Definition: jmemmgr.c:178
METHODDEF void realize_virt_arrays(j_common_ptr cinfo)
Definition: jmemmgr.c:583
GLOBAL void jpeg_open_backing_store(j_common_ptr cinfo, backing_store_ptr info, long total_bytes_needed)
Definition: jmemansi.c:141
METHODDEF JSAMPARRAY alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, JDIMENSION numrows)
Definition: jmemmgr.c:395
#define NULL
Definition: Lib.h:88
union small_pool_struct small_pool_hdr
METHODDEF jvirt_barray_ptr request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION blocksperrow, JDIMENSION numrows, JDIMENSION maxaccess)
Definition: jmemmgr.c:553
METHODDEF JBLOCKARRAY alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, JDIMENSION numrows)
Definition: jmemmgr.c:443
Definition: eax4.h:1413
GLOBAL long jpeg_mem_available(j_common_ptr cinfo, long min_bytes_needed, long max_bytes_needed, long already_allocated)
Definition: jmemansi.c:81
large_pool_ptr large_list[JPOOL_NUMPOOLS]
Definition: jmemmgr.c:121
JBLOCK FAR * JBLOCKROW
Definition: jpeglib.h:84
METHODDEF void free_pool(j_common_ptr cinfo, int pool_id)
Definition: jmemmgr.c:930
GLOBAL void * jpeg_get_small(j_common_ptr cinfo, size_t sizeofobject)
Definition: jmemansi.c:36
#define FAR
Definition: jmorecfg.h:205
#define JPP(arglist)
Definition: jpeglib.h:802
#define MIN(X, Y)
standard MIN macro
Definition: main.c:145
#define GLOBAL
Definition: jmorecfg.h:190
#define METHODDEF
Definition: jmorecfg.h:188
JDIMENSION rows_in_mem
Definition: jmemmgr.c:171
#define ERREXIT1(cinfo, code, p1)
Definition: jerror.h:196
LOCAL void do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
Definition: jmemmgr.c:690
LOCAL void out_of_memory(j_common_ptr cinfo, int which)
Definition: jmemmgr.c:217
JSAMPROW * JSAMPARRAY
Definition: jpeglib.h:80
struct jvirt_barray_control * jvirt_barray_ptr
Definition: jpeglib.h:740
jvirt_barray_ptr virt_barray_list
Definition: jmemmgr.c:129
GLOBAL void jzero_far(void FAR *target, size_t bytestozero)
Definition: jutils.c:161
size_t bytes_left
Definition: jmemmgr.c:106
#define JPOOL_NUMPOOLS
Definition: jpeglib.h:737
small_pool_ptr next
Definition: jmemmgr.c:93
backing_store_info b_s_info
Definition: jmemmgr.c:179
JDIMENSION cur_start_row
Definition: jmemmgr.c:173
size_t bytes_used
Definition: jmemmgr.c:105
JDIMENSION rowsperchunk
Definition: jmemmgr.c:172
METHODDEF jvirt_sarray_ptr request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION samplesperrow, JDIMENSION numrows, JDIMENSION maxaccess)
Definition: jmemmgr.c:523
METHODDEF JSAMPARRAY access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable)
Definition: jmemmgr.c:756
const GLcharARB * name
Definition: glext.h:3629
METHODDEF void * alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject)
Definition: jmemmgr.c:257
#define FALSE
Definition: mprintf.c:70
backing_store_info b_s_info
Definition: jmemmgr.c:163
#define JPOOL_PERMANENT
Definition: jpeglib.h:735
GLOBAL void FAR * jpeg_get_large(j_common_ptr cinfo, size_t sizeofobject)
Definition: jmemansi.c:56
unsigned int JDIMENSION
Definition: jmorecfg.h:177
#define TRUE
Definition: mprintf.c:69
struct small_pool_struct::@88 hdr
if(!ValidDisplayID(prefInfo.prefDisplayID)) prefInfo.prefDisplayID
#define MAX_ALLOC_CHUNK
Definition: jmemsys.h:76
#define MIN_SLOP
Definition: jmemmgr.c:253
small_pool_ptr small_list[JPOOL_NUMPOOLS]
Definition: jmemmgr.c:120
JDIMENSION samplesperrow
Definition: jmemmgr.c:153
struct jvirt_sarray_control * jvirt_sarray_ptr
Definition: jpeglib.h:739
JDIMENSION first_undef_row
Definition: jmemmgr.c:174