doom3-gpl
Doom 3 GPL source release
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
jccoefct.c
Go to the documentation of this file.
1 /*
2  * jccoefct.c
3  *
4  * Copyright (C) 1994-1995, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the coefficient buffer controller for compression.
9  * This controller is the top level of the JPEG compressor proper.
10  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
11  */
12 
13 #define JPEG_INTERNALS
14 #include "jinclude.h"
15 #include "jpeglib.h"
16 
17 
18 /* We use a full-image coefficient buffer when doing Huffman optimization,
19  * and also for writing multiple-scan JPEG files. In all cases, the DCT
20  * step is run during the first pass, and subsequent passes need only read
21  * the buffered coefficients.
22  */
23 #ifdef ENTROPY_OPT_SUPPORTED
24 #define FULL_COEF_BUFFER_SUPPORTED
25 #else
26 #ifdef C_MULTISCAN_FILES_SUPPORTED
27 #define FULL_COEF_BUFFER_SUPPORTED
28 #endif
29 #endif
30 
31 
32 /* Private buffer controller object */
33 
34 typedef struct {
35  struct jpeg_c_coef_controller pub; /* public fields */
36 
37  JDIMENSION iMCU_row_num; /* iMCU row # within image */
38  JDIMENSION mcu_ctr; /* counts MCUs processed in current row */
39  int MCU_vert_offset; /* counts MCU rows within iMCU row */
40  int MCU_rows_per_iMCU_row; /* number of such rows needed */
41 
42  /* For single-pass compression, it's sufficient to buffer just one MCU
43  * (although this may prove a bit slow in practice). We allocate a
44  * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
45  * MCU constructed and sent. (On 80x86, the workspace is FAR even though
46  * it's not really very big; this is to keep the module interfaces unchanged
47  * when a large coefficient buffer is necessary.)
48  * In multi-pass modes, this array points to the current MCU's blocks
49  * within the virtual arrays.
50  */
52 
53  /* In multi-pass modes, we need a virtual block array for each component. */
56 
58 
59 
60 /* Forward declarations */
62  JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
63 #ifdef FULL_COEF_BUFFER_SUPPORTED
65  JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
67  JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
68 #endif
69 
70 
71 LOCAL void
73 /* Reset within-iMCU-row counters for a new row */
74 {
75  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
76 
77  /* In an interleaved scan, an MCU row is the same as an iMCU row.
78  * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
79  * But at the bottom of the image, process only what's left.
80  */
81  if (cinfo->comps_in_scan > 1) {
82  coef->MCU_rows_per_iMCU_row = 1;
83  } else {
84  if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
86  else
88  }
89 
90  coef->mcu_ctr = 0;
91  coef->MCU_vert_offset = 0;
92 }
93 
94 
95 /*
96  * Initialize for a processing pass.
97  */
98 
99 METHODDEF void
101 {
102  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
103 
104  coef->iMCU_row_num = 0;
105  start_iMCU_row(cinfo);
106 
107  switch (pass_mode) {
108  case JBUF_PASS_THRU:
109  if (coef->whole_image[0] != NULL)
110  ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
111  coef->pub.compress_data = compress_data;
112  break;
113 #ifdef FULL_COEF_BUFFER_SUPPORTED
114  case JBUF_SAVE_AND_PASS:
115  if (coef->whole_image[0] == NULL)
116  ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
117  coef->pub.compress_data = compress_first_pass;
118  break;
119  case JBUF_CRANK_DEST:
120  if (coef->whole_image[0] == NULL)
121  ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
122  coef->pub.compress_data = compress_output;
123  break;
124 #endif
125  default:
126  ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
127  break;
128  }
129 }
130 
131 
132 /*
133  * Process some data in the single-pass case.
134  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
135  * per call, ie, v_samp_factor block rows for each component in the image.
136  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
137  *
138  * NB: input_buf contains a plane for each component in image.
139  * For single pass, this is the same as the components in the scan.
140  */
141 
142 METHODDEF boolean
144 {
145  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
146  JDIMENSION MCU_col_num; /* index of current MCU within row */
147  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
148  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
149  int blkn, bi, ci, yindex, yoffset, blockcnt;
150  JDIMENSION ypos, xpos;
151  jpeg_component_info *compptr;
152 
153  /* Loop to write as much as one whole iMCU row */
154  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
155  yoffset++) {
156  for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
157  MCU_col_num++) {
158  /* Determine where data comes from in input_buf and do the DCT thing.
159  * Each call on forward_DCT processes a horizontal row of DCT blocks
160  * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
161  * sequentially. Dummy blocks at the right or bottom edge are filled in
162  * specially. The data in them does not matter for image reconstruction,
163  * so we fill them with values that will encode to the smallest amount of
164  * data, viz: all zeroes in the AC entries, DC entries equal to previous
165  * block's DC value. (Thanks to Thomas Kinsman for this idea.)
166  */
167  blkn = 0;
168  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
169  compptr = cinfo->cur_comp_info[ci];
170  blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
171  : compptr->last_col_width;
172  xpos = MCU_col_num * compptr->MCU_sample_width;
173  ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
174  for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
175  if (coef->iMCU_row_num < last_iMCU_row ||
176  yoffset+yindex < compptr->last_row_height) {
177  (*cinfo->fdct->forward_DCT) (cinfo, compptr,
178  input_buf[ci], coef->MCU_buffer[blkn],
179  ypos, xpos, (JDIMENSION) blockcnt);
180  if (blockcnt < compptr->MCU_width) {
181  /* Create some dummy blocks at the right edge of the image. */
182  jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
183  (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
184  for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
185  coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
186  }
187  }
188  } else {
189  /* Create a row of dummy blocks at the bottom of the image. */
190  jzero_far((void FAR *) coef->MCU_buffer[blkn],
191  compptr->MCU_width * SIZEOF(JBLOCK));
192  for (bi = 0; bi < compptr->MCU_width; bi++) {
193  coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
194  }
195  }
196  blkn += compptr->MCU_width;
197  ypos += DCTSIZE;
198  }
199  }
200  /* Try to write the MCU. In event of a suspension failure, we will
201  * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
202  */
203  if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
204  /* Suspension forced; update state counters and exit */
205  coef->MCU_vert_offset = yoffset;
206  coef->mcu_ctr = MCU_col_num;
207  return FALSE;
208  }
209  }
210  /* Completed an MCU row, but perhaps not an iMCU row */
211  coef->mcu_ctr = 0;
212  }
213  /* Completed the iMCU row, advance counters for next one */
214  coef->iMCU_row_num++;
215  start_iMCU_row(cinfo);
216  return TRUE;
217 }
218 
219 
220 #ifdef FULL_COEF_BUFFER_SUPPORTED
221 
222 /*
223  * Process some data in the first pass of a multi-pass case.
224  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
225  * per call, ie, v_samp_factor block rows for each component in the image.
226  * This amount of data is read from the source buffer, DCT'd and quantized,
227  * and saved into the virtual arrays. We also generate suitable dummy blocks
228  * as needed at the right and lower edges. (The dummy blocks are constructed
229  * in the virtual arrays, which have been padded appropriately.) This makes
230  * it possible for subsequent passes not to worry about real vs. dummy blocks.
231  *
232  * We must also emit the data to the entropy encoder. This is conveniently
233  * done by calling compress_output() after we've loaded the current strip
234  * of the virtual arrays.
235  *
236  * NB: input_buf contains a plane for each component in image. All
237  * components are DCT'd and loaded into the virtual arrays in this pass.
238  * However, it may be that only a subset of the components are emitted to
239  * the entropy encoder during this first pass; be careful about looking
240  * at the scan-dependent variables (MCU dimensions, etc).
241  */
242 
243 METHODDEF boolean
245 {
246  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
247  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
248  JDIMENSION blocks_across, MCUs_across, MCUindex;
249  int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
250  JCOEF lastDC;
251  jpeg_component_info *compptr;
253  JBLOCKROW thisblockrow, lastblockrow;
254 
255  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
256  ci++, compptr++) {
257  /* Align the virtual buffer for this component. */
258  buffer = (*cinfo->mem->access_virt_barray)
259  ((j_common_ptr) cinfo, coef->whole_image[ci],
260  coef->iMCU_row_num * compptr->v_samp_factor,
261  (JDIMENSION) compptr->v_samp_factor, TRUE);
262  /* Count non-dummy DCT block rows in this iMCU row. */
263  if (coef->iMCU_row_num < last_iMCU_row)
264  block_rows = compptr->v_samp_factor;
265  else {
266  /* NB: can't use last_row_height here, since may not be set! */
267  block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
268  if (block_rows == 0) block_rows = compptr->v_samp_factor;
269  }
270  blocks_across = compptr->width_in_blocks;
271  h_samp_factor = compptr->h_samp_factor;
272  /* Count number of dummy blocks to be added at the right margin. */
273  ndummy = (int) (blocks_across % h_samp_factor);
274  if (ndummy > 0)
275  ndummy = h_samp_factor - ndummy;
276  /* Perform DCT for all non-dummy blocks in this iMCU row. Each call
277  * on forward_DCT processes a complete horizontal row of DCT blocks.
278  */
279  for (block_row = 0; block_row < block_rows; block_row++) {
280  thisblockrow = buffer[block_row];
281  (*cinfo->fdct->forward_DCT) (cinfo, compptr,
282  input_buf[ci], thisblockrow,
283  (JDIMENSION) (block_row * DCTSIZE),
284  (JDIMENSION) 0, blocks_across);
285  if (ndummy > 0) {
286  /* Create dummy blocks at the right edge of the image. */
287  thisblockrow += blocks_across; /* => first dummy block */
288  jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
289  lastDC = thisblockrow[-1][0];
290  for (bi = 0; bi < ndummy; bi++) {
291  thisblockrow[bi][0] = lastDC;
292  }
293  }
294  }
295  /* If at end of image, create dummy block rows as needed.
296  * The tricky part here is that within each MCU, we want the DC values
297  * of the dummy blocks to match the last real block's DC value.
298  * This squeezes a few more bytes out of the resulting file...
299  */
300  if (coef->iMCU_row_num == last_iMCU_row) {
301  blocks_across += ndummy; /* include lower right corner */
302  MCUs_across = blocks_across / h_samp_factor;
303  for (block_row = block_rows; block_row < compptr->v_samp_factor;
304  block_row++) {
305  thisblockrow = buffer[block_row];
306  lastblockrow = buffer[block_row-1];
307  jzero_far((void FAR *) thisblockrow,
308  (size_t) (blocks_across * SIZEOF(JBLOCK)));
309  for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
310  lastDC = lastblockrow[h_samp_factor-1][0];
311  for (bi = 0; bi < h_samp_factor; bi++) {
312  thisblockrow[bi][0] = lastDC;
313  }
314  thisblockrow += h_samp_factor; /* advance to next MCU in row */
315  lastblockrow += h_samp_factor;
316  }
317  }
318  }
319  }
320  /* NB: compress_output will increment iMCU_row_num if successful.
321  * A suspension return will result in redoing all the work above next time.
322  */
323 
324  /* Emit data to the entropy encoder, sharing code with subsequent passes */
325  return compress_output(cinfo, input_buf);
326 }
327 
328 
329 /*
330  * Process some data in subsequent passes of a multi-pass case.
331  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
332  * per call, ie, v_samp_factor block rows for each component in the scan.
333  * The data is obtained from the virtual arrays and fed to the entropy coder.
334  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
335  *
336  * NB: input_buf is ignored; it is likely to be a NULL pointer.
337  */
338 
339 METHODDEF boolean
341 {
342  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
343  JDIMENSION MCU_col_num; /* index of current MCU within row */
344  int blkn, ci, xindex, yindex, yoffset;
345  JDIMENSION start_col;
347  JBLOCKROW buffer_ptr;
348  jpeg_component_info *compptr;
349 
350  /* Align the virtual buffers for the components used in this scan.
351  * NB: during first pass, this is safe only because the buffers will
352  * already be aligned properly, so jmemmgr.c won't need to do any I/O.
353  */
354  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
355  compptr = cinfo->cur_comp_info[ci];
356  buffer[ci] = (*cinfo->mem->access_virt_barray)
357  ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
358  coef->iMCU_row_num * compptr->v_samp_factor,
359  (JDIMENSION) compptr->v_samp_factor, FALSE);
360  }
361 
362  /* Loop to process one whole iMCU row */
363  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
364  yoffset++) {
365  for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
366  MCU_col_num++) {
367  /* Construct list of pointers to DCT blocks belonging to this MCU */
368  blkn = 0; /* index of current DCT block within MCU */
369  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
370  compptr = cinfo->cur_comp_info[ci];
371  start_col = MCU_col_num * compptr->MCU_width;
372  for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
373  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
374  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
375  coef->MCU_buffer[blkn++] = buffer_ptr++;
376  }
377  }
378  }
379  /* Try to write the MCU. */
380  if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
381  /* Suspension forced; update state counters and exit */
382  coef->MCU_vert_offset = yoffset;
383  coef->mcu_ctr = MCU_col_num;
384  return FALSE;
385  }
386  }
387  /* Completed an MCU row, but perhaps not an iMCU row */
388  coef->mcu_ctr = 0;
389  }
390  /* Completed the iMCU row, advance counters for next one */
391  coef->iMCU_row_num++;
392  start_iMCU_row(cinfo);
393  return TRUE;
394 }
395 
396 #endif /* FULL_COEF_BUFFER_SUPPORTED */
397 
398 
399 /*
400  * Initialize coefficient buffer controller.
401  */
402 
403 GLOBAL void
404 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
405 {
406  my_coef_ptr coef;
407 
408  coef = (my_coef_ptr)
409  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
411  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
412  coef->pub.start_pass = start_pass_coef;
413 
414  /* Create the coefficient buffer. */
415  if (need_full_buffer) {
416 #ifdef FULL_COEF_BUFFER_SUPPORTED
417  /* Allocate a full-image virtual array for each component, */
418  /* padded to a multiple of samp_factor DCT blocks in each direction. */
419  int ci;
420  jpeg_component_info *compptr;
421 
422  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
423  ci++, compptr++) {
424  coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
425  ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
426  (JDIMENSION) jround_up((long) compptr->width_in_blocks,
427  (long) compptr->h_samp_factor),
428  (JDIMENSION) jround_up((long) compptr->height_in_blocks,
429  (long) compptr->v_samp_factor),
430  (JDIMENSION) compptr->v_samp_factor);
431  }
432 #else
433  ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
434 #endif
435  } else {
436  /* We only need a single-MCU buffer. */
438  int i;
439 
440  buffer = (JBLOCKROW)
441  (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
443  for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
444  coef->MCU_buffer[i] = buffer + i;
445  }
446  coef->whole_image[0] = NULL; /* flag for no virtual arrays */
447  }
448 }
METHODDEF boolean compress_output(j_compress_ptr cinfo, JSAMPIMAGE input_buf)
Definition: jccoefct.c:340
struct jpeg_forward_dct * fdct
Definition: jpeglib.h:399
struct jpeg_common_struct * j_common_ptr
Definition: jpeglib.h:260
METHODDEF boolean compress_data JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf))
JCOEF JBLOCK[DCTSIZE2]
Definition: jpeglib.h:83
case const int
Definition: Callbacks.cpp:52
JBLOCKROW * JBLOCKARRAY
Definition: jpeglib.h:85
#define MAX_COMPONENTS
Definition: jmorecfg.h:35
#define LOCAL
Definition: jmorecfg.h:189
JDIMENSION mcu_ctr
Definition: jccoefct.c:38
#define ERREXIT(cinfo, code)
Definition: jerror.h:193
#define SIZEOF(object)
Definition: jinclude.h:80
short JCOEF
Definition: jmorecfg.h:99
struct jpeg_entropy_encoder * entropy
Definition: jpeglib.h:400
int i
Definition: process.py:33
JDIMENSION width_in_blocks
Definition: jpeglib.h:151
#define JPOOL_IMAGE
Definition: jpeglib.h:736
struct jpeg_c_coef_controller pub
Definition: jccoefct.c:35
JDIMENSION height_in_blocks
Definition: jpeglib.h:152
METHODDEF boolean compress_data(j_compress_ptr cinfo, JSAMPIMAGE input_buf)
Definition: jccoefct.c:143
struct jpeg_c_coef_controller * coef
Definition: jpeglib.h:395
my_coef_controller * my_coef_ptr
Definition: jccoefct.c:57
JDIMENSION total_iMCU_rows
Definition: jpeglib.h:364
#define NULL
Definition: Lib.h:88
JDIMENSION iMCU_row_num
Definition: jccoefct.c:37
GLuint buffer
Definition: glext.h:3108
#define C_MAX_BLOCKS_IN_MCU
Definition: jpeglib.h:56
JBLOCK FAR * JBLOCKROW
Definition: jpeglib.h:84
#define FAR
Definition: jmorecfg.h:205
GLint GLint GLint yoffset
Definition: glext.h:2879
#define GLOBAL
Definition: jmorecfg.h:190
JSAMPARRAY * JSAMPIMAGE
Definition: jpeglib.h:81
JDIMENSION MCUs_per_row
Definition: jpeglib.h:379
#define METHODDEF
Definition: jmorecfg.h:188
METHODDEF boolean compress_first_pass(j_compress_ptr cinfo, JSAMPIMAGE input_buf)
Definition: jccoefct.c:244
GLOBAL void jzero_far(void FAR *target, size_t bytestozero)
Definition: jutils.c:161
METHODDEF void start_pass_coef(j_compress_ptr cinfo, J_BUF_MODE pass_mode)
Definition: jccoefct.c:100
LOCAL void start_iMCU_row(j_compress_ptr cinfo)
Definition: jccoefct.c:72
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]
Definition: jpeglib.h:376
J_BUF_MODE
Definition: jpegint.h:16
#define DCTSIZE
Definition: jpeglib.h:42
#define FALSE
Definition: mprintf.c:70
jvirt_barray_ptr whole_image[MAX_COMPONENTS]
Definition: jccoefct.c:54
unsigned int JDIMENSION
Definition: jmorecfg.h:177
#define TRUE
Definition: mprintf.c:69
if(!ValidDisplayID(prefInfo.prefDisplayID)) prefInfo.prefDisplayID
GLOBAL void jinit_c_coef_controller(j_compress_ptr cinfo, boolean need_full_buffer)
Definition: jccoefct.c:404
#define MAX_COMPS_IN_SCAN
Definition: jpeglib.h:47
jpeg_component_info * comp_info
Definition: jpeglib.h:298
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]
Definition: jccoefct.c:51
GLOBAL long jround_up(long a, long b)
Definition: jutils.c:77
int MCU_rows_per_iMCU_row
Definition: jccoefct.c:40