doom3-gpl
Doom 3 GPL source release
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
jdcoefct.c
Go to the documentation of this file.
1 /*
2  * jdcoefct.c
3  *
4  * Copyright (C) 1994-1995, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the coefficient buffer controller for decompression.
9  * This controller is the top level of the JPEG decompressor proper.
10  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
11  *
12  * In buffered-image mode, this controller is the interface between
13  * input-oriented processing and output-oriented processing.
14  * Also, the input side (only) is used when reading a file for transcoding.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 
21 /* Block smoothing is only applicable for progressive JPEG, so: */
22 #ifndef D_PROGRESSIVE_SUPPORTED
23 #undef BLOCK_SMOOTHING_SUPPORTED
24 #endif
25 
26 /* Private buffer controller object */
27 
28 typedef struct {
29  struct jpeg_d_coef_controller pub; /* public fields */
30 
31  /* These variables keep track of the current location of the input side. */
32  /* cinfo->input_iMCU_row is also used for this. */
33  JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
34  int MCU_vert_offset; /* counts MCU rows within iMCU row */
35  int MCU_rows_per_iMCU_row; /* number of such rows needed */
36 
37  /* The output side's location is represented by cinfo->output_iMCU_row. */
38 
39  /* In single-pass modes, it's sufficient to buffer just one MCU.
40  * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
41  * and let the entropy decoder write into that workspace each time.
42  * (On 80x86, the workspace is FAR even though it's not really very big;
43  * this is to keep the module interfaces unchanged when a large coefficient
44  * buffer is necessary.)
45  * In multi-pass modes, this array points to the current MCU's blocks
46  * within the virtual arrays; it is used only by the input side.
47  */
48  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
49 
50 #ifdef D_MULTISCAN_FILES_SUPPORTED
51  /* In multi-pass modes, we need a virtual block array for each component. */
52  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
53 #endif
54 
55 #ifdef BLOCK_SMOOTHING_SUPPORTED
56  /* When doing block smoothing, we latch coefficient Al values here */
57  int * coef_bits_latch;
58 #define SAVED_COEFS 6 /* we save coef_bits[0..5] */
59 #endif
61 
63 
64 /* Forward declarations */
66  JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
67 #ifdef D_MULTISCAN_FILES_SUPPORTED
68 METHODDEF int decompress_data
69  JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
70 #endif
71 #ifdef BLOCK_SMOOTHING_SUPPORTED
72 LOCAL boolean smoothing_ok JPP((j_decompress_ptr cinfo));
73 METHODDEF int decompress_smooth_data
74  JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
75 #endif
76 
77 
78 LOCAL void
80 /* Reset within-iMCU-row counters for a new row (input side) */
81 {
82  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
83 
84  /* In an interleaved scan, an MCU row is the same as an iMCU row.
85  * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
86  * But at the bottom of the image, process only what's left.
87  */
88  if (cinfo->comps_in_scan > 1) {
89  coef->MCU_rows_per_iMCU_row = 1;
90  } else {
91  if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
93  else
95  }
96 
97  coef->MCU_ctr = 0;
98  coef->MCU_vert_offset = 0;
99 }
100 
101 
102 /*
103  * Initialize for an input processing pass.
104  */
105 
106 METHODDEF void
108 {
109  cinfo->input_iMCU_row = 0;
110  start_iMCU_row(cinfo);
111 }
112 
113 
114 /*
115  * Initialize for an output processing pass.
116  */
117 
118 METHODDEF void
120 {
121 #ifdef BLOCK_SMOOTHING_SUPPORTED
122  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
123 
124  /* If multipass, check to see whether to use block smoothing on this pass */
125  if (coef->pub.coef_arrays != NULL) {
126  if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
127  coef->pub.decompress_data = decompress_smooth_data;
128  else
129  coef->pub.decompress_data = decompress_data;
130  }
131 #endif
132  cinfo->output_iMCU_row = 0;
133 }
134 
135 
136 /*
137  * Decompress and return some data in the single-pass case.
138  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
139  * Input and output must run in lockstep since we have only a one-MCU buffer.
140  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
141  *
142  * NB: output_buf contains a plane for each component in image.
143  * For single pass, this is the same as the components in the scan.
144  */
145 
146 METHODDEF int
148 {
149  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
150  JDIMENSION MCU_col_num; /* index of current MCU within row */
151  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
152  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
153  int blkn, ci, xindex, yindex, yoffset, useful_width;
154  JSAMPARRAY output_ptr;
155  JDIMENSION start_col, output_col;
156  jpeg_component_info *compptr;
157  inverse_DCT_method_ptr inverse_DCT;
158 
159  /* Loop to process as much as one whole iMCU row */
160  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
161  yoffset++) {
162  for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
163  MCU_col_num++) {
164  /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
165  jzero_far((void FAR *) coef->MCU_buffer[0],
166  (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
167  if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
168  /* Suspension forced; update state counters and exit */
169  coef->MCU_vert_offset = yoffset;
170  coef->MCU_ctr = MCU_col_num;
171  return JPEG_SUSPENDED;
172  }
173  /* Determine where data should go in output_buf and do the IDCT thing.
174  * We skip dummy blocks at the right and bottom edges (but blkn gets
175  * incremented past them!). Note the inner loop relies on having
176  * allocated the MCU_buffer[] blocks sequentially.
177  */
178  blkn = 0; /* index of current DCT block within MCU */
179  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
180  compptr = cinfo->cur_comp_info[ci];
181  /* Don't bother to IDCT an uninteresting component. */
182  if (! compptr->component_needed) {
183  blkn += compptr->MCU_blocks;
184  continue;
185  }
186  inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
187  useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
188  : compptr->last_col_width;
189  output_ptr = output_buf[ci] + yoffset * compptr->DCT_scaled_size;
190  start_col = MCU_col_num * compptr->MCU_sample_width;
191  for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
192  if (cinfo->input_iMCU_row < last_iMCU_row ||
193  yoffset+yindex < compptr->last_row_height) {
194  output_col = start_col;
195  for (xindex = 0; xindex < useful_width; xindex++) {
196  (*inverse_DCT) (cinfo, compptr,
197  (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
198  output_ptr, output_col);
199  output_col += compptr->DCT_scaled_size;
200  }
201  }
202  blkn += compptr->MCU_width;
203  output_ptr += compptr->DCT_scaled_size;
204  }
205  }
206  }
207  /* Completed an MCU row, but perhaps not an iMCU row */
208  coef->MCU_ctr = 0;
209  }
210  /* Completed the iMCU row, advance counters for next one */
211  cinfo->output_iMCU_row++;
212  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
213  start_iMCU_row(cinfo);
214  return JPEG_ROW_COMPLETED;
215  }
216  /* Completed the scan */
217  (*cinfo->inputctl->finish_input_pass) (cinfo);
218  return JPEG_SCAN_COMPLETED;
219 }
220 
221 
222 /*
223  * Dummy consume-input routine for single-pass operation.
224  */
225 
226 METHODDEF int
228 {
229  return JPEG_SUSPENDED; /* Always indicate nothing was done */
230 }
231 
232 
233 #ifdef D_MULTISCAN_FILES_SUPPORTED
234 
235 /*
236  * Consume input data and store it in the full-image coefficient buffer.
237  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
238  * ie, v_samp_factor block rows for each component in the scan.
239  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
240  */
241 
242 METHODDEF int
243 consume_data (j_decompress_ptr cinfo)
244 {
245  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
246  JDIMENSION MCU_col_num; /* index of current MCU within row */
247  int blkn, ci, xindex, yindex, yoffset;
248  JDIMENSION start_col;
250  JBLOCKROW buffer_ptr;
251  jpeg_component_info *compptr;
252 
253  /* Align the virtual buffers for the components used in this scan. */
254  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
255  compptr = cinfo->cur_comp_info[ci];
256  buffer[ci] = (*cinfo->mem->access_virt_barray)
257  ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
258  cinfo->input_iMCU_row * compptr->v_samp_factor,
259  (JDIMENSION) compptr->v_samp_factor, TRUE);
260  /* Note: entropy decoder expects buffer to be zeroed,
261  * but this is handled automatically by the memory manager
262  * because we requested a pre-zeroed array.
263  */
264  }
265 
266  /* Loop to process one whole iMCU row */
267  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
268  yoffset++) {
269  for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
270  MCU_col_num++) {
271  /* Construct list of pointers to DCT blocks belonging to this MCU */
272  blkn = 0; /* index of current DCT block within MCU */
273  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
274  compptr = cinfo->cur_comp_info[ci];
275  start_col = MCU_col_num * compptr->MCU_width;
276  for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
277  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
278  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
279  coef->MCU_buffer[blkn++] = buffer_ptr++;
280  }
281  }
282  }
283  /* Try to fetch the MCU. */
284  if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
285  /* Suspension forced; update state counters and exit */
286  coef->MCU_vert_offset = yoffset;
287  coef->MCU_ctr = MCU_col_num;
288  return JPEG_SUSPENDED;
289  }
290  }
291  /* Completed an MCU row, but perhaps not an iMCU row */
292  coef->MCU_ctr = 0;
293  }
294  /* Completed the iMCU row, advance counters for next one */
295  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
296  start_iMCU_row(cinfo);
297  return JPEG_ROW_COMPLETED;
298  }
299  /* Completed the scan */
300  (*cinfo->inputctl->finish_input_pass) (cinfo);
301  return JPEG_SCAN_COMPLETED;
302 }
303 
304 
305 /*
306  * Decompress and return some data in the multi-pass case.
307  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
308  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
309  *
310  * NB: output_buf contains a plane for each component in image.
311  */
312 
313 METHODDEF int
314 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
315 {
316  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
317  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
318  JDIMENSION block_num;
319  int ci, block_row, block_rows;
321  JBLOCKROW buffer_ptr;
322  JSAMPARRAY output_ptr;
323  JDIMENSION output_col;
324  jpeg_component_info *compptr;
325  inverse_DCT_method_ptr inverse_DCT;
326 
327  /* Force some input to be done if we are getting ahead of the input. */
328  while (cinfo->input_scan_number < cinfo->output_scan_number ||
329  (cinfo->input_scan_number == cinfo->output_scan_number &&
330  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
331  if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
332  return JPEG_SUSPENDED;
333  }
334 
335  /* OK, output from the virtual arrays. */
336  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
337  ci++, compptr++) {
338  /* Don't bother to IDCT an uninteresting component. */
339  if (! compptr->component_needed)
340  continue;
341  /* Align the virtual buffer for this component. */
342  buffer = (*cinfo->mem->access_virt_barray)
343  ((j_common_ptr) cinfo, coef->whole_image[ci],
344  cinfo->output_iMCU_row * compptr->v_samp_factor,
345  (JDIMENSION) compptr->v_samp_factor, FALSE);
346  /* Count non-dummy DCT block rows in this iMCU row. */
347  if (cinfo->output_iMCU_row < last_iMCU_row)
348  block_rows = compptr->v_samp_factor;
349  else {
350  /* NB: can't use last_row_height here; it is input-side-dependent! */
351  block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
352  if (block_rows == 0) block_rows = compptr->v_samp_factor;
353  }
354  inverse_DCT = cinfo->idct->inverse_DCT[ci];
355  output_ptr = output_buf[ci];
356  /* Loop over all DCT blocks to be processed. */
357  for (block_row = 0; block_row < block_rows; block_row++) {
358  buffer_ptr = buffer[block_row];
359  output_col = 0;
360  for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
361  (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
362  output_ptr, output_col);
363  buffer_ptr++;
364  output_col += compptr->DCT_scaled_size;
365  }
366  output_ptr += compptr->DCT_scaled_size;
367  }
368  }
369 
370  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
371  return JPEG_ROW_COMPLETED;
372  return JPEG_SCAN_COMPLETED;
373 }
374 
375 #endif /* D_MULTISCAN_FILES_SUPPORTED */
376 
377 
378 #ifdef BLOCK_SMOOTHING_SUPPORTED
379 
380 /*
381  * This code applies interblock smoothing as described by section K.8
382  * of the JPEG standard: the first 5 AC coefficients are estimated from
383  * the DC values of a DCT block and its 8 neighboring blocks.
384  * We apply smoothing only for progressive JPEG decoding, and only if
385  * the coefficients it can estimate are not yet known to full precision.
386  */
387 
388 /*
389  * Determine whether block smoothing is applicable and safe.
390  * We also latch the current states of the coef_bits[] entries for the
391  * AC coefficients; otherwise, if the input side of the decompressor
392  * advances into a new scan, we might think the coefficients are known
393  * more accurately than they really are.
394  */
395 
396 LOCAL boolean
397 smoothing_ok (j_decompress_ptr cinfo)
398 {
399  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
400  boolean smoothing_useful = FALSE;
401  int ci, coefi;
402  jpeg_component_info *compptr;
403  JQUANT_TBL * qtable;
404  int * coef_bits;
405  int * coef_bits_latch;
406 
407  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
408  return FALSE;
409 
410  /* Allocate latch area if not already done */
411  if (coef->coef_bits_latch == NULL)
412  coef->coef_bits_latch = (int *)
413  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
414  cinfo->num_components *
415  (SAVED_COEFS * SIZEOF(int)));
416  coef_bits_latch = coef->coef_bits_latch;
417 
418  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
419  ci++, compptr++) {
420  /* All components' quantization values must already be latched. */
421  if ((qtable = compptr->quant_table) == NULL)
422  return FALSE;
423  /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
424  for (coefi = 0; coefi <= 5; coefi++) {
425  if (qtable->quantval[coefi] == 0)
426  return FALSE;
427  }
428  /* DC values must be at least partly known for all components. */
429  coef_bits = cinfo->coef_bits[ci];
430  if (coef_bits[0] < 0)
431  return FALSE;
432  /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
433  for (coefi = 1; coefi <= 5; coefi++) {
434  coef_bits_latch[coefi] = coef_bits[coefi];
435  if (coef_bits[coefi] != 0)
436  smoothing_useful = TRUE;
437  }
438  coef_bits_latch += SAVED_COEFS;
439  }
440 
441  return smoothing_useful;
442 }
443 
444 
445 /*
446  * Variant of decompress_data for use when doing block smoothing.
447  */
448 
449 METHODDEF int
450 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
451 {
452  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
453  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
454  JDIMENSION block_num, last_block_column;
455  int ci, block_row, block_rows, access_rows;
457  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
458  JSAMPARRAY output_ptr;
459  JDIMENSION output_col;
460  jpeg_component_info *compptr;
461  inverse_DCT_method_ptr inverse_DCT;
462  boolean first_row, last_row;
463  JBLOCK workspace;
464  int *coef_bits;
465  JQUANT_TBL *quanttbl;
466  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
467  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
468  int Al, pred;
469 
470  /* Force some input to be done if we are getting ahead of the input. */
471  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
472  ! cinfo->inputctl->eoi_reached) {
473  if (cinfo->input_scan_number == cinfo->output_scan_number) {
474  /* If input is working on current scan, we ordinarily want it to
475  * have completed the current row. But if input scan is DC,
476  * we want it to keep one row ahead so that next block row's DC
477  * values are up to date.
478  */
479  JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
480  if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
481  break;
482  }
483  if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
484  return JPEG_SUSPENDED;
485  }
486 
487  /* OK, output from the virtual arrays. */
488  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
489  ci++, compptr++) {
490  /* Don't bother to IDCT an uninteresting component. */
491  if (! compptr->component_needed)
492  continue;
493  /* Count non-dummy DCT block rows in this iMCU row. */
494  if (cinfo->output_iMCU_row < last_iMCU_row) {
495  block_rows = compptr->v_samp_factor;
496  access_rows = block_rows * 2; /* this and next iMCU row */
497  last_row = FALSE;
498  } else {
499  /* NB: can't use last_row_height here; it is input-side-dependent! */
500  block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
501  if (block_rows == 0) block_rows = compptr->v_samp_factor;
502  access_rows = block_rows; /* this iMCU row only */
503  last_row = TRUE;
504  }
505  /* Align the virtual buffer for this component. */
506  if (cinfo->output_iMCU_row > 0) {
507  access_rows += compptr->v_samp_factor; /* prior iMCU row too */
508  buffer = (*cinfo->mem->access_virt_barray)
509  ((j_common_ptr) cinfo, coef->whole_image[ci],
510  (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
511  (JDIMENSION) access_rows, FALSE);
512  buffer += compptr->v_samp_factor; /* point to current iMCU row */
513  first_row = FALSE;
514  } else {
515  buffer = (*cinfo->mem->access_virt_barray)
516  ((j_common_ptr) cinfo, coef->whole_image[ci],
517  (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
518  first_row = TRUE;
519  }
520  /* Fetch component-dependent info */
521  coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
522  quanttbl = compptr->quant_table;
523  Q00 = quanttbl->quantval[0];
524  Q01 = quanttbl->quantval[1];
525  Q10 = quanttbl->quantval[2];
526  Q20 = quanttbl->quantval[3];
527  Q11 = quanttbl->quantval[4];
528  Q02 = quanttbl->quantval[5];
529  inverse_DCT = cinfo->idct->inverse_DCT[ci];
530  output_ptr = output_buf[ci];
531  /* Loop over all DCT blocks to be processed. */
532  for (block_row = 0; block_row < block_rows; block_row++) {
533  buffer_ptr = buffer[block_row];
534  if (first_row && block_row == 0)
535  prev_block_row = buffer_ptr;
536  else
537  prev_block_row = buffer[block_row-1];
538  if (last_row && block_row == block_rows-1)
539  next_block_row = buffer_ptr;
540  else
541  next_block_row = buffer[block_row+1];
542  /* We fetch the surrounding DC values using a sliding-register approach.
543  * Initialize all nine here so as to do the right thing on narrow pics.
544  */
545  DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
546  DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
547  DC7 = DC8 = DC9 = (int) next_block_row[0][0];
548  output_col = 0;
549  last_block_column = compptr->width_in_blocks - 1;
550  for (block_num = 0; block_num <= last_block_column; block_num++) {
551  /* Fetch current DCT block into workspace so we can modify it. */
552  jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
553  /* Update DC values */
554  if (block_num < last_block_column) {
555  DC3 = (int) prev_block_row[1][0];
556  DC6 = (int) buffer_ptr[1][0];
557  DC9 = (int) next_block_row[1][0];
558  }
559  /* Compute coefficient estimates per K.8.
560  * An estimate is applied only if coefficient is still zero,
561  * and is not known to be fully accurate.
562  */
563  /* AC01 */
564  if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
565  num = 36 * Q00 * (DC4 - DC6);
566  if (num >= 0) {
567  pred = (int) (((Q01<<7) + num) / (Q01<<8));
568  if (Al > 0 && pred >= (1<<Al))
569  pred = (1<<Al)-1;
570  } else {
571  pred = (int) (((Q01<<7) - num) / (Q01<<8));
572  if (Al > 0 && pred >= (1<<Al))
573  pred = (1<<Al)-1;
574  pred = -pred;
575  }
576  workspace[1] = (JCOEF) pred;
577  }
578  /* AC10 */
579  if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
580  num = 36 * Q00 * (DC2 - DC8);
581  if (num >= 0) {
582  pred = (int) (((Q10<<7) + num) / (Q10<<8));
583  if (Al > 0 && pred >= (1<<Al))
584  pred = (1<<Al)-1;
585  } else {
586  pred = (int) (((Q10<<7) - num) / (Q10<<8));
587  if (Al > 0 && pred >= (1<<Al))
588  pred = (1<<Al)-1;
589  pred = -pred;
590  }
591  workspace[8] = (JCOEF) pred;
592  }
593  /* AC20 */
594  if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
595  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
596  if (num >= 0) {
597  pred = (int) (((Q20<<7) + num) / (Q20<<8));
598  if (Al > 0 && pred >= (1<<Al))
599  pred = (1<<Al)-1;
600  } else {
601  pred = (int) (((Q20<<7) - num) / (Q20<<8));
602  if (Al > 0 && pred >= (1<<Al))
603  pred = (1<<Al)-1;
604  pred = -pred;
605  }
606  workspace[16] = (JCOEF) pred;
607  }
608  /* AC11 */
609  if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
610  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
611  if (num >= 0) {
612  pred = (int) (((Q11<<7) + num) / (Q11<<8));
613  if (Al > 0 && pred >= (1<<Al))
614  pred = (1<<Al)-1;
615  } else {
616  pred = (int) (((Q11<<7) - num) / (Q11<<8));
617  if (Al > 0 && pred >= (1<<Al))
618  pred = (1<<Al)-1;
619  pred = -pred;
620  }
621  workspace[9] = (JCOEF) pred;
622  }
623  /* AC02 */
624  if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
625  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
626  if (num >= 0) {
627  pred = (int) (((Q02<<7) + num) / (Q02<<8));
628  if (Al > 0 && pred >= (1<<Al))
629  pred = (1<<Al)-1;
630  } else {
631  pred = (int) (((Q02<<7) - num) / (Q02<<8));
632  if (Al > 0 && pred >= (1<<Al))
633  pred = (1<<Al)-1;
634  pred = -pred;
635  }
636  workspace[2] = (JCOEF) pred;
637  }
638  /* OK, do the IDCT */
639  (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
640  output_ptr, output_col);
641  /* Advance for next column */
642  DC1 = DC2; DC2 = DC3;
643  DC4 = DC5; DC5 = DC6;
644  DC7 = DC8; DC8 = DC9;
645  buffer_ptr++, prev_block_row++, next_block_row++;
646  output_col += compptr->DCT_scaled_size;
647  }
648  output_ptr += compptr->DCT_scaled_size;
649  }
650  }
651 
652  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
653  return JPEG_ROW_COMPLETED;
654  return JPEG_SCAN_COMPLETED;
655 }
656 
657 #endif /* BLOCK_SMOOTHING_SUPPORTED */
658 
659 
660 /*
661  * Initialize coefficient buffer controller.
662  */
663 
664 GLOBAL void
665 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
666 {
667  my_coef_ptr coef;
668 
669  coef = (my_coef_ptr)
670  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
672  cinfo->coef = (struct jpeg_d_coef_controller *) coef;
673  coef->pub.start_input_pass = start_input_pass;
674  coef->pub.start_output_pass = start_output_pass;
675 #ifdef BLOCK_SMOOTHING_SUPPORTED
676  coef->coef_bits_latch = NULL;
677 #endif
678 
679  /* Create the coefficient buffer. */
680  if (need_full_buffer) {
681 #ifdef D_MULTISCAN_FILES_SUPPORTED
682  /* Allocate a full-image virtual array for each component, */
683  /* padded to a multiple of samp_factor DCT blocks in each direction. */
684  /* Note we ask for a pre-zeroed array. */
685  int ci, access_rows;
686  jpeg_component_info *compptr;
687 
688  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
689  ci++, compptr++) {
690  access_rows = compptr->v_samp_factor;
691 #ifdef BLOCK_SMOOTHING_SUPPORTED
692  /* If block smoothing could be used, need a bigger window */
693  if (cinfo->progressive_mode)
694  access_rows *= 3;
695 #endif
696  coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
697  ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
698  (JDIMENSION) jround_up((long) compptr->width_in_blocks,
699  (long) compptr->h_samp_factor),
700  (JDIMENSION) jround_up((long) compptr->height_in_blocks,
701  (long) compptr->v_samp_factor),
702  (JDIMENSION) access_rows);
703  }
704  coef->pub.consume_data = consume_data;
705  coef->pub.decompress_data = decompress_data;
706  coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
707 #else
708  ERREXIT(cinfo, JERR_NOT_COMPILED);
709 #endif
710  } else {
711  /* We only need a single-MCU buffer. */
713  int i;
714 
715  buffer = (JBLOCKROW)
716  (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
718  for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
719  coef->MCU_buffer[i] = buffer + i;
720  }
721  coef->pub.consume_data = dummy_consume_data;
722  coef->pub.decompress_data = decompress_onepass;
723  coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
724  }
725 }
JDIMENSION MCU_ctr
Definition: jdcoefct.c:33
boolean do_block_smoothing
Definition: jpeglib.h:436
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN]
Definition: jpeglib.h:584
struct jpeg_input_controller * inputctl
Definition: jpeglib.h:610
jpeg_component_info * comp_info
Definition: jpeglib.h:530
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]
Definition: jpegint.h:226
struct jpeg_common_struct * j_common_ptr
Definition: jpeglib.h:260
JCOEF JBLOCK[DCTSIZE2]
Definition: jpeglib.h:83
case const int
Definition: Callbacks.cpp:52
JBLOCKROW * JBLOCKARRAY
Definition: jpeglib.h:85
struct jpeg_d_coef_controller * coef
Definition: jpeglib.h:608
METHODDEF int dummy_consume_data(j_decompress_ptr cinfo)
Definition: jdcoefct.c:227
#define MAX_COMPONENTS
Definition: jmorecfg.h:35
#define LOCAL
Definition: jmorecfg.h:189
#define ERREXIT(cinfo, code)
Definition: jerror.h:193
#define JPEG_ROW_COMPLETED
Definition: jpeglib.h:958
#define SIZEOF(object)
Definition: jinclude.h:80
short JCOEF
Definition: jmorecfg.h:99
long INT32
Definition: jmorecfg.h:154
int i
Definition: process.py:33
METHODDEF int decompress_onepass JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf))
GLuint GLuint num
Definition: glext.h:5390
LOCAL void start_iMCU_row(j_decompress_ptr cinfo)
Definition: jdcoefct.c:79
JDIMENSION width_in_blocks
Definition: jpeglib.h:151
#define JPOOL_IMAGE
Definition: jpeglib.h:736
struct jpeg_c_coef_controller pub
Definition: jccoefct.c:35
METHODDEF void start_output_pass(j_decompress_ptr cinfo)
Definition: jdcoefct.c:119
JDIMENSION height_in_blocks
Definition: jpeglib.h:152
GLOBAL void jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
Definition: jdcoefct.c:665
#define NULL
Definition: Lib.h:88
GLuint buffer
Definition: glext.h:3108
METHODDEF void start_input_pass(j_decompress_ptr cinfo)
Definition: jdcoefct.c:107
JBLOCK FAR * JBLOCKROW
Definition: jpeglib.h:84
#define FAR
Definition: jmorecfg.h:205
GLOBAL void jcopy_block_row(JBLOCKROW input_row, JBLOCKROW output_row, JDIMENSION num_blocks)
Definition: jutils.c:141
JCOEF FAR * JCOEFPTR
Definition: jpeglib.h:88
GLint GLint GLint yoffset
Definition: glext.h:2879
#define GLOBAL
Definition: jmorecfg.h:190
JSAMPARRAY * JSAMPIMAGE
Definition: jpeglib.h:81
#define METHODDEF
Definition: jmorecfg.h:188
JSAMPROW * JSAMPARRAY
Definition: jpeglib.h:80
GLOBAL void jzero_far(void FAR *target, size_t bytestozero)
Definition: jutils.c:161
#define D_MAX_BLOCKS_IN_MCU
Definition: jpeglib.h:58
#define JPEG_SCAN_COMPLETED
Definition: jpeglib.h:959
JDIMENSION input_iMCU_row
Definition: jpeglib.h:490
#define JPEG_SUSPENDED
Definition: jpeglib.h:925
JDIMENSION MCUs_per_row
Definition: jpeglib.h:587
#define FALSE
Definition: mprintf.c:70
JDIMENSION output_iMCU_row
Definition: jpeglib.h:497
boolean progressive_mode
Definition: jpeglib.h:533
METHODDEF int decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
Definition: jdcoefct.c:147
jvirt_barray_ptr whole_image[MAX_COMPONENTS]
Definition: jccoefct.c:54
unsigned int JDIMENSION
Definition: jmorecfg.h:177
#define TRUE
Definition: mprintf.c:69
int(* coef_bits)[DCTSIZE2]
Definition: jpeglib.h:506
if(!ValidDisplayID(prefInfo.prefDisplayID)) prefInfo.prefDisplayID
struct jpeg_inverse_dct * idct
Definition: jpeglib.h:613
my_coef_controller * my_coef_ptr
Definition: jdcoefct.c:62
struct jpeg_entropy_decoder * entropy
Definition: jpeglib.h:612
JDIMENSION total_iMCU_rows
Definition: jpeglib.h:567
#define MAX_COMPS_IN_SCAN
Definition: jpeglib.h:47
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]
Definition: jccoefct.c:51
GLOBAL long jround_up(long a, long b)
Definition: jutils.c:77
int MCU_rows_per_iMCU_row
Definition: jccoefct.c:40